Теорема пеано дифференциальные уравнения

Теорема пеано дифференциальные уравнения

— одна из теорем существования решения обыкновенного дифференциального уравнения, установленная Дж. Пеано [1] и состоящая в следующем. Пусть дано дифференциальное уравнение

(*)

Тогда если функция f ограничена и непрерывна в области G, то через каждую внутреннюю точку ( х 0 , y 0 ) этой области проходит, по крайней мере, одна интегральная кривая уравнения (*). Может оказаться, что через нек-рую точку проходит более одной интегральной кривой, напр. для уравнения существует бесконечное множество интегральных кривых, проходящих через точку (0, 0):

где а, b — произвольные постоянные.

Имеются обобщения (в том числе многомерные) П. т. (см. [2], [3]).

Лит.:[1] Реапо G., "Math. Ann.", 1890, Bd 37, S. 182- 228; [2] Петровский И. Г., Лекции по теории обыкновенных дифференциальных уравнений, 6 изд., М,, 1970; [3] Xартман Ф., Обыкновенные дифференциальные уравнения, пер. с англ., М., 1970. М. И. Войцеховский.

Математическая энциклопедия. — М.: Советская энциклопедия . И. М. Виноградов . 1977—1985 .

Смотреть что такое "ПЕАНО ТЕОРЕМА" в других словарях:

Теорема Асколи — Арцела — Теорема Арцела утверждение, которое представляет собой критерий предкомпактности множества в полном метрическом пространстве в том специальном случае, когда рассматриваемое пространство пространство непрерывных функций на отрезке… … Википедия

Теорема Асколи — Теорема Арцела утверждение, которое представляет собой критерий предкомпактности множества в полном метрическом пространстве в том специальном случае, когда рассматриваемое пространство пространство непрерывных функций на отрезке… … Википедия

Теорема Лёба — Теорема Лёба теорема в математической логике о взаимосвязи между доказуемостью утверждения и самим утверждением. Установлена математиком Мартином Хуго Лёбом в 1955 году. Теорема Лёба гласит, что во всякой теории, включающей аксиоматику… … Википедия

Теорема Гудстейна — Теорема Гудстейна теорема математической логики о натуральных числах, доказанная Рубеном Гудстейном.[1] Утверждает, что все последовательности Гудстейна заканчиваются нулём. Как показали Л. Кирби и Дж. Парис (англ.),[2][3] Теорема… … Википедия

Пеано кривая — Кривая Пеано общее название для параметрических кривых образ которых содержит квадрат (или, в более общем смысле , открытые области пространства) Обычно такие примеры строятся как предел последовательности кривых. Содержание 1 Свойства 2 Примеры… … Википедия

ПЕАНО КРИВАЯ — непрерывный образ отрезка, заполняющий внутренность квадрата (или треугольника). Открыта Дж. Пеано [1]. П. к., рассматриваемая как плоская фигура, не есть множество, нигде не плотное на плоскости; она является жордановой, но не канторовой кривой … Математическая энциклопедия

Кривая Пеано — общее название для параметрических кривых, образ которых содержит квадрат (или, в более общем смысле, открытые области пространства) Содержание 1 Свойства 2 Примеры 3 Обобщения … Википедия

Аксиомы Пеано — Аксиомы Пеано одна из систем аксиом для натуральных чисел. Аксиомы Пеано позволили формализовать арифметику. После введения аксиом стали возможны доказательства многих свойств натуральных и целых чисел, а также использование целых чисел для … Википедия

Читайте также:  Видеорегистратор infinity пароль по умолчанию

Список статей по математической логике — Это служебный список статей, созданный для координации работ по развитию темы. Данное предупреждение не ус … Википедия

Арифметика — Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Впервые существование решения дифференциального уравнения было доказано Коши. Приводимое ниже доказательство основано на методе последовательных приближений, который принадлежит Пикару. Этот метод имеет самостоятельное значение, поскольку позволяет получить приближенное решение дифференциального уравнения.

Формулировка теоремы

Пусть дано дифференциальное уравнение первого порядка:
(1)
с начальным условием
(1.1) .
Пусть – непрерывная функция двух переменных в замкнутой области :

и, следовательно, ограничена некоторым положительным значением :
(2) .
И пусть функция удовлетворяет условию Липшица:
(3) ,
.
Тогда существует единственное решение уравнения (1):
,
удовлетворяющее начальному условию , определенное и непрерывное для значений в интервале:
,
где есть наименьшее из двух чисел и .

Условие Липшица

Рассмотрим условие Липшица. Оно имеет вид:
(3) ,
где – положительное число;
, и – любые значения из области :
, , .

Смысл условия Липшица легко понять, если записать его в виде:
(3.1) .
При некотором фиксированном значении переменной , функция является функцией от переменной : . Пусть мы имеем график этой функции. Возьмем две точки, принадлежащие , на этом графике и проведем через них прямую. Тогда угол между прямой и осью ограничен некоторым значением , которое меньше . При таком ограничении график не имеет вертикальных касательных и скачков. А в тех точках, где существует частная производная , она ограничена:
.

Если в области функция имеет непрерывную частную производную , то в этой области выполняется условие Липшица (3).
Для доказательства заметим, что поскольку частная производная непрерывна в замкнутой области, то она ограничена:
.
По теореме Лагранжа о конечных приращениях, имеем:
,
где частные производные вычисляются в некоторой точке , в которой переменная принадлежат интервалу между и :
.
Тогда:
.

Доказательство существования решения

Приведем исходное уравнение (1) с начальным условием (1.1) к интегральному уравнению. Левая и правая части (1) являются функциями от . Заменим на :
.
Интегрируем это уравнение по от до :
;
Подставим начальное условие . В результате получим интегральное уравнение:
(4) .

Покажем, что интегральное уравнение (4) эквивалентно дифференциальному уравнению (1) с начальным условием (1.1). Для этого нужно показать, что из (1) и (1.1) следует (4) и из (4) следует (1) и (1.1). То, что из (1) и (1.1) следует (4) мы уже показали. Осталось показать, что из (4) следует (1) и (1.1). Для этого подставим в (4) . Получим начальное условие (1.1). Продифференцировав обе части уравнения (4) по , получаем уравнение (1).

Читайте также:  Перед установкой винды форматировать диск

Далее мы пытаемся найти решение уравнения (4) с помощью последовательных приближений. Для этого определяем ряд функций от переменной по формулам:
(5.1) ;
(5.2) ;
(5.3) ;
.
(5.n) .
Мы предполагаем, что при , стремится к решению уравнения (4):
(6) ,
где – решение уравнения (4). Если мы докажем это, то мы докажем существование решения.

Доказательство существования решения будем проводить в два этапа:
1> вначале докажем, что предел (6) существует;
2) затем докажем, что удовлетворяет уравнению (4):
.

1) Доказательство существования предела yn при n стремящемся к бесконечности

Сведем последовательные приближения (5.1) – (5.n) к сумме ряда. Для этого пишем:

.
Таким образом нам нужно доказать, что ряд
(7)
сходится при .

Сначала покажем, что при , последовательные приближения принадлежат интервалу .
Действительно, при имеем:
.
Поскольку есть наименьшее из двух чисел и , то и
.

Далее, поскольку принадлежит интервалу , то . Тогда, аналогично предыдущему,
.
Отсюда
.

Далее, по индукции, поскольку принадлежат интервалу , то и
.
Отсюда
.

Итак, мы доказали, что последовательные приближения принадлежат интервалу
.
Теперь мы можем оценить члены ряда (7), применяя условие Липшица.

Для первого члена имеем:
;
(8.1) .
Для второго члена применяем условие Липшица и оценку (8.1):

;
(8.2) .
Для третьего члена применяем, аналогично, условие Липшица и оценку (8.2):

;
(8.3) .

Далее применим метод индукции. Пусть
(8.n) .
Тогда

;
(8.n+1) .
Итак, поскольку (8.n) справедливо для и из (8.n) следует (8.n+1), то (8.n) выполняется для любых .

Запишем ряд (7) в виде:
(7.1) ,
где .
Применим (8.n) и заменим наибольшим допустимым значением :
.
Тогда каждый член ряда (7.1) ограничен по модулю членом ряда
(9) .
Исследуем ряд (9) на сходимость. Применим признак Даламбера:
.
Итак, ряд (9) сходится. Поскольку все члены ряда (7.1), начиная со второго, по абсолютной величине меньше членов сходящегося ряда (9), то, в силу критерия Вейерштрасса, ряд (7.1) сходится равномерно для всех , удовлетворяющих условию . Поскольку интеграл есть непрерывная функция от верхнего предела, то каждый член ряда (7.1) есть непрерывная функция от . Поэтому предел
(10)
существует и является непрерывной функцией от .

2) Доказательство того, что Y является решением (4)

Рассмотрим уравнение (5.n):
(5.n) .
Докажем, что при , это уравнение стремится к уравнению
(11) .

В силу (10) левая часть уравнения (5.n) стремится к .

Теперь покажем, что
.

Перепишем правую часть (5.n):
.
Далее заметим, что поскольку все принадлежат закрытому интервалу , то и принадлежит этому интервалу, . Поэтому мы можем применить условие Липшица.

Оценим абсолютную величину последнего члена:

.
Поскольку, при , стремится к равномерно, то для любого положительного числа можно указать такое натуральное число , что для всех ,
.
Тогда
.
Поскольку произвольно, то

Поэтому
.
То есть при уравнение
(5.n)
принимает вид
(11) .

Читайте также:  Клей для приклеивания контактов обогрева заднего стекла

Доказательство единственности решения

Предположим, что уравнение
(4)
имеет два решения и , различающиеся в некоторой точке , принадлежащей интервалу .
Рассмотрим функцию
.
Будем считать, что . В противном случае поменяем местами и .
Поскольку и непрерывны, то и непрерывная функция. Поэтому она отлична от нуля в некотором интервале, содержащем точку :
при .
Поскольку , то . То есть точка не принадлежит этому интервалу.

Если , то преобразуем (4) следующим образом:
,
где
.
Если переобозначить постоянные
,
то получим задачу (4), для которой
;
при ,
где – некоторое число, не превосходящее .

Если , то поступаем аналогично:
,
Переобозначим постоянные:
.
Получаем задачу (4), для которой
;
при ,
где – некоторое число, не меньшее .

Итак, мы имеем:
;
при ( или при ).
Далее возьмем произвольное положительное число ( или ) и рассмотрим закрытый интервал ( или ). Поскольку функция непрерывна, то она достигает наибольшего значения в одной из точек этого интервала:
( или ).

Сделаем оценку, применяя уравнение (4) и условие Липшица:

;
.
Поскольку , то разделим на :
.
Возникает противоречие, поскольку при это неравенство не выполняется.

Следовательно, не может иметь отличных от нуля значений. Поэтому . Что и требовалось доказать.

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.

Автор: Олег Одинцов . Опубликовано: 04-06-2016 Изменено: 20-06-2016

Связанные понятия

В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.

В этой статье рассматривается математический базис общей теории относительности.

Смешанные частные производные одной и той же функции, отличающиеся лишь порядком (очерёдностью) дифференцирования, равны между собой при условии их непрерывности. Такое свойство называется равенством смешанных производных.

В математике, в теории приближений оператор наилучшего приближения есть оператор, отображающий элемент пространства в ближайший к нему из некоторого множества. Например, можно рассматривать оператор, который любой непрерывной на отрезке функции ставит в соответствие ближайший к ней полином определённой степени. Другое название операторов наилучшего приближения — проектор.

Отношение инцидентности — это бинарное отношение между двумя различными типами объектов. Это включает понятия, которые можно выразить такими фразами как «точка лежит на прямой» или «прямая принадлежит плоскости». Наиболее существенное отношение инцидентности — между точкой P и прямой l, которое записывается как P I l. Если P I l, пара (P, l) называется флагом. В разговорном языке существует много выражений, описывающих отношение инцидентности (например, прямая проходит через точку, точка лежит на.

О дискретном эквиваленте преобразования Лапласа см. Z-преобразование.В математике дискретный оператор Лапласа — аналог непрерывного оператора Лапласа, определяемого как отношения на графе или дискретной сетке. В случае конечномерного графа (имеющего конечное число вершин и рёбер) дискретный оператор Лапласа имеет более общее название: матрица Лапласа.

Ссылка на основную публикацию
Стим показывает что я не в сети
Не редко пользователи Steam встречаются с проблемой, когда подключение к интернету есть, браузеры работают, но клиент Стим не грузит страницы...
Смарт часы что они умеют
В этой статье мы поговорим о том, для чего нужны умные часы, а также какими функциями они располагают чаще всего....
Смарт часы самсунг с сим картой
Хотите быть современным и модным человеком? Перестать зависеть от своего громоздкого смартфона? Только представьте, вы можете не брать телефон на...
Стим саппорт украли аккаунт
Если ваш аккаунт Steam украли или взломали, то до его восстановления вам необходимо выполнить действия, указанные ниже, иначе аккаунт может...
Adblock detector