Спектроанализатор звука своими руками

Спектроанализатор звука своими руками

Десятиканальный аналоговый спектроанализатор

Автор: Олег Наконечный
Опубликовано 26.11.2015
Создано при помощи КотоРед.

В этой статье я расскажу про анализатор спектра (спектроанализатор) звукового сигнала – устройство, которое из звукового сигнала выделяет отдельные частотные составляющие и отображает их уровни на индикаторе. Все мы могли видеть такую штуку в проигрывателе на компьютере. Да-да, та самая куча полосочек, хаотично (на самом деле нет) дергающихся под музыку.

Этот спектроанализатор разрабатывался мной для встройки в стационарный усилитель звуковой частоты. Имеет он десять каналов выделения определенных частот из звукового спектра (32 Гц; 64 Гц; 125 Гц; 250 Гц; 500 Гц; 1 кГц; 2 кГц; 4 кГц; 8 кГц; 16 кГц), соответственно для каждого канала отводится столбик светодиодов на индикаторе. Частоты, лежащие между двух соседних каналов, подавляются не полностью и немного отображаются в обоих каналах. Также имеются два канала отображения общих уровней сигналов в левом и правом звуковом канале усилителя. Отображаются все уровни на матричном светодиодном индикаторе.

Спектроанализатор построен на операционных усилителях, микросхемах КМОП-логики и дискретных активных и пассивных компонентах. За счет применения десяти отдельных полосовых фильтров и сумматоров было достигнуто хорошее разделение каналов, возможность независимо для каждого канала выбирать резонансную частоту, ширину полосы пропускания и усиление простым подбором резисторов и конденсаторов в соответствующих цепях входного каскада. С помощью цифровых микросхем реализована динамическая индикация, что существенно сокращает число необходимых компонентов в сравнении со статической индикацией, снижает потребляемый ток. Однако и яркость свечения светодиодов снижается пропорционально увеличению количества столбцов в матрице, генератор развертки является источником шума в сигнальном тракте, через светодиоды, хоть и недолго, течет большой ток, так что нужно внимательно подходить к выбору токоограничивающих резисторов и изучать документацию производителя светодиодов.

Для работы спектроанализатора нужен биполярный источник питания с напряжениями +5В и -5В в каждом плече соответственно. Отрицательный источник питает только входной каскад, поэтому от него потребляется сравнительно маленький ток, равный 36,5 миллиамперам. С положительным источником питания дела обстоят иначе: он питает все блоки спектроанализатора и потребляемый от него ток может импульсно изменятся от 48,5 до 675 миллиампер. Чем больше светодиодов в матрице зажжено – тем больший ток потребляется. Чем больше разница в количестве зажженных светодиодов между соседними столбцами – тем круче будут импульсы потребляемого тока. Это обусловлено динамическим типом индикации. При необходимости напряжение каждого источника питания можно повысить (в случае отрицательного источника — понизить) вплоть до 15В. Однако следует принимать во внимание, что сопротивления токогоасящих резисторов прийдется пересчитать и рассеиваямая тепловая можность на каждом резисторе возростет, а примененные мной SMD-резисторы 1206 могут рассеять не больше 0,25 Вт тепла.

Спектроанализатор состоит из трех основных блоков:

  1. Блок входных усилителей и фильтров;
  2. Блок управления индикацией;
  3. Блок матричного светодиодного индикатора.

1. Блок входных усилителей и фильтров.

Схема блока приведена на рисунке:

Состоит он из двенадцати отдельных каналов обработки сигнала: 10 каналов анализатора спектра и 2 канала индикатора уровня сигнала.

Звуковой сигнал от источника сигнала поступает на два входных буфера — DA6.1 и DA6.2. Они развязывают источник сигнала от остальных каскадов, которые сильно нагружали бы его, искажая сигнал. К выходам буферов подключены каналы анализатора спектра, а также амплитудные детекторы индикаторов общего уровня сигнала.

Каналы анализатора спектра имеют идентичную схемотехнику и отличаются лишь номиналами частотозадающих конденсаторов. Отдельный канал состоит из инвертирующего сумматора, полосового фильтра и амплитудного детектора. Для примера ниже приведена схема канала выделения частоты 16 кГц.

Сумматор предназначен для объединения сигналов левого и правого каналов. На его выходе образуется сигнал с амплитудой равной сумме амплитуд сигналов из левого и правого каналов с дополнительной инверсией. Инверсия нужна потому, что следующий после него полосовой фильтр тоже построен по инвертирующей схеме. Для каждого канала анализатора спектра был применен отдельный сумматор, потому что хотелось иметь возможность регулировать усиление отдельно в каждом канале, а делать это в полосовом фильтре не влияя на его частотные характеристики не получится. Номиналы резисторов в сумматоре имеют величину в 100 кОм, что бы при параллельном соединении всех десять каналов их общее входное сопротивление было 10 кОм и несильно нагружало входные буфера.

Полосовой фильтр построен по самой классической схеме, описаний которой много в сети и литературе. Добротность каждого фильтра равна 5, что дало оптимальную ширину полосы пропускания, при которой частоты, лежащие между двух каналов, подавляются не полностью и отображаются немного в обоих каналах. Ширина полосы пропускания конкретного фильтра равна отношению его резонансной частоты к добротности. Усиление фильтра на резонансной частоте равно -1. Резисторы и конденсаторы фильтров требуют точного подбора номиналов. Если этого не сделать отклонение всех параметров фильтра может достигать 20% особенно на фильтрах с низкой резонансной частотой (это можно заметить на видеоролике в конце статьи т.к. мне лень было обмерять кучу планарных конденсаторов :Р ). При расчетах были использованы значения конденсаторов из стандартного ряда, а точные номиналы резисторов приведены в скобках рядом с ближайшим номиналом из ряда Е24.

Амплитудный детектор также собран по классической схеме и в пояснениях особо не нуждается. Построен он на германиевых диодах Д9. Их прямое падение напряжение, в сравнении с кремниевыми диодами, существенно меньше и составляет 0,15 – 0,3 В. Амплитудно-модулированное напряжение, поступающее с выхода фильтра, проходит через прямо включенный диод, где от него отрезается отрицательная составляющая, и подается на конденсатор. Конденсатор за каждый полупериод заряжается до амплитудного значения и разряжается через параллельно включенный резистор. В результате изменение напряжения на нем по форме совпадает с изменением амплитуды, то есть является огибающей амплитудно-модулированного входного сигнала. Изменяя номиналы конденсатора и резистора можно соответственно изменять скорость нарастания столбика и скорость спадания. Конденсатор большой емкости требует больше времени для заряда, соответственно и столбик на индикаторе будет дольше подниматься. А если уменьшить сопротивление резистора, шунтирующего конденсатор, то разряжаться он будет быстрее и индикатор будет быстрее гаснуть.

Все двенадцать сигналов собираются на входах двух аналоговых мультиплексоров — DD3 и DD4. Адресные входы обоих мультиплексоров соединены так, что они работают как один мультиплексор с шестнадцатью входами. В зависимости от управляющего кода, генерируемого схемой управления индикацией, производится выбор одного конкретного канала и его сигнал подается дальше на схему аналого-цифрового преобразователя (АЦП).

Мультиплексоры размещены на плате входного каскада для того, чтобы не тянуть далеко 12 проводников с аналоговым сигналом. Цифровой код управления мультиплексорами более устойчив к помехам и требует меньше проводников для передачи сигнала.

2. Блок управления индикацией.

Второй блок управляет процессом отображения значений амплитуды каждого сигнала на соответствующем месте индикатора. Состоит он из двух основных частей: АЦП в левом нижнем углу и схема развертки — в правом верхнем углу. Схема блока показана на рисунке:

Спектроанализатор – что мы на нем видим?

Алексей Лукин

Спектроанализатор – прибор для измерения и отображения спектра сигнала – распределения энергии сигнала по частотам. В этой статье рассматриваются основные виды анализаторов спектра и иллюстрируется их применение для редактирования и реставрации звука. Особое внимание уделяется современным анализаторам, основанным на FFT – быстром преобразовании Фурье.

Зачем анализировать спектр?

Традиционно в цифровой звукозаписи аудиодорожка представляется в виде осциллограммы, отображающей форму звуковой волны (waveform), то есть зависимость амплитуды звука от времени. Такое представление достаточно наглядно для опытного звукорежиссёра: осциллограмма позволяет увидеть основные события в звуке, такие как изменения громкости, паузы между частями произведения и зачастую даже отдельные ноты в сольной записи инструмента. Но одновременное звучание нескольких инструментов на осциллограмме "смешивается" и визуальный анализ сигнала становится затруднительным. Тем не менее, наше ухо без труда различает отдельные инструменты в небольшом ансамбле. Как же это происходит?

Когда сложное звуковое колебание попадает на барабанную перепонку уха, оно с помощью серии слуховых косточек передаётся на орган, называемый улиткой. Улитка представляет собой закрученную в спираль эластичную трубочку. Толщина и жёсткость улитки плавно меняются от края к центру спирали. Когда сложное колебание поступает на край улитки, это вызывает ответные колебания разных частей улитки. При этом резонансная частота у каждой части улитки своя. Таким образом улитка раскладывает сложное звуковое колебание на отдельные частотные составляющие. К каждой части улитки подходят отдельные группы слуховых нервов, передающие информацию о колебаниях улитки в головной мозг (более подробно о слуховом восприятии можно прочитать в статье "Основы психоакустики" И. Алдошиной в журнале "Звукорежиссер" №6, 1999). В результате в мозг поступает информация о звуке, уже разложенная по частотам, и человек легко отличает высокие звуки от низких. Кроме того, как мы вскоре увидим, разложение звука на частоты помогает различить отдельные инструменты в полифонической записи, что значительно расширяет возможности редактирования.

Полосовые спектроанализаторы

Первые звуковые анализаторы спектра разделяли сигнал на частотные полосы с помощью набора аналоговых фильтров. Дисплей такого анализатора (рис. 1) показывает уровень сигнала во множестве частотных полос, соответствующих фильтрам.

На рис. 2 приведён пример частотных характеристик полосовых фильтров в анализаторе, удовлетворяющем стандарту ГОСТ 17168-82. Такой анализатор называется третьоктавным, так как в каждой октаве частотного диапазона имеется три полосы. Видно, что частотные характеристики полосовых фильтров перекрываются; их крутизна зависит от порядка используемых фильтров.

Читайте также:  Как обновить драйвера видеокарты на windows 8

Важным свойством спектроанализатора является баллистика – инерционность измерителей уровня в частотных полосах. Она может регулироваться заданием скорости нарастания (атаки) и спада уровня. Типичное время атаки и спада в таком анализаторе – порядка 200 и 1500 мс.

Полосовые спектроанализаторы часто применяются для настройки АЧХ (амплитудно-частотной характеристики) акустических систем на концертных площадках. Если на вход такому анализатору подать розовый шум (имеющий одинаковую мощность в каждой октаве), то дисплей покажет горизонтальную линию, с возможной поправкой на вариацию шума во времени. Если розовый шум, проходя через звукоусилительную систему зала, исказился, то изменения его спектра будут видны на анализаторе. При этом анализатор, как и наше ухо, будет малочувствителен к узким провалам АЧХ (менее 1/3 октавы).

Преобразование Фурье

Преобразование Фурье – это математический аппарат для разложения сигналов на синусоидальные колебания. Например, если сигнал x(t) непрерывный и бесконечный по времени, то его можно представить в виде интеграла Фурье:

Интеграл Фурье собирает сигнал x(t) из бесконечного множества синусоидальных составляющих всевозможных частот ω, имеющих амплитуды Xω и фазы φω.

На практике нас больше интересует анализ конечных по времени звуков. Поскольку музыка не является статичным сигналом, её спектр меняется во времени. Поэтому при спектральном анализе нас обычно интересуют отдельные короткие фрагменты сигнала. Для анализа таких фрагментов цифрового аудиосигнала существует дискретное преобразование Фурье:

Здесь N отсчётов дискретного сигнала x(n) на интервале времени от 0 до N–1 синтезируются как сумма конечного числа синусоидальных колебаний с амплитудами Xk и фазами φk. Частоты этих синусоид равны kF/N, где F – частота дискретизации сигнала, а N – число отсчётов исходного сигнала x(n) на анализируемом интервале. Набор коэффициентов Xk называется амплитудным спектром сигнала. Как видно из формулы, частоты синусоид, на которые раскладывается сигнал, равномерно распределены от 0 (постоянная составляющая) до F/2 – максимально возможной частоты в цифровом сигнале. Такое линейное расположение частот отличается от распределения полос третьоктавного анализатора.

FFT-анализаторы

FFT (fast Fourier transform) – алгоритм быстрого вычисления дискретного преобразования Фурье. Благодаря ему стало возможным анализировать спектр звуковых сигналов в реальном времени.

Рассмотрим работу типичного FFT-анализатора. На вход ему поступает цифровой аудиосигнал. Анализатор выбирает из сигнала последовательные интервалы («окна»), на которых будет вычисляться спектр, и считает FFT в каждом окне для получения амплитудного спектра Xk. Вычисленный спектр отображается в виде графика зависимости амплитуды от частоты (рис. 3). Аналогично полосовым анализаторам, обычно используется логарифмический масштаб по осям частот и амплитуд. Но из-за линейного расположения полос FFT по частоте спектр может выглядеть недостаточно детальным на нижних частотах или излишне осциллирующим на верхних частотах.

Если рассматривать FFT как набор фильтров, то, в отличие от полосовых фильтров третьоктавного анализатора, фильтры FFT будут иметь одинаковую ширину в герцах, а не в октавах. Поэтому розовый шум на FFT-анализаторе будет уже не горизонтальной линией, а наклонной, со спадом 3 дБ/окт. Горизонтальной линией на FFT-анализаторе будет белый шум – он содержит равную энергию в равных линейных частотных интервалах.

Параметр N – число анализируемых отсчётов сигнала – имеет решающее значение для вида спектра. Чем больше N, тем плотнее сетка частот, по которым FFT раскладывает сигнал, и тем больше деталей по частоте видно на спектре. Для достижения более высокого частотного разрешения приходится анализировать более длинные участки сигнала. Если сигнал в пределах окна FFT меняет свои свойства, то спектр будет отображать некоторую усреднённую информацию о сигнале со всего интервала окна.

Когда нужно проанализировать быстрые изменения в сигнале, длину окна N выбирают маленькой. В этом случае разрешение анализа по времени увеличивается, а по частоте – уменьшается. Таким образом, разрешение анализа по частоте обратно пропорционально разрешению по времени. Этот факт называется соотношением неопределённостей.

Весовые окна

Один из простейших звуковых сигналов – синусоидальный тон. Как будет выглядеть его спектр на FFT-анализаторе? Оказывается, это зависит от частоты тона. Мы знаем, что FFT раскладывает сигнал не по тем частотам, которые на самом деле присутствуют в сигнале, а по фиксированной равномерной сетке частот. Например, если частота дискретизации равна 48 кГц и размер окна FFT выбран 4096 отсчётов, то FFT раскладывает сигнал по 2049 частотам: 0 Гц, 11.72 Гц, 23.44 Гц, . 24000 Гц.

Если частота тона совпадает с одной из частот сетки FFT, то спектр будет выглядеть "идеально": единственный острый пик укажет на частоту и амплитуду тона (рис. 4, белый график).

Если же частота тона не совпадает ни с одной из частот сетки FFT, то FFT "соберёт" тон из имеющихся в сетке частот, скомбинированных с различными весами. График спектра при этом размывается по частоте (рис. 4, зелёный график). Такое размытие обычно нежелательно, так как оно может закрыть собой более слабые звуки на соседних частотах. Можно также заметить, что амплитуда максимума зелёного графика ниже реальной амплитуды анализируемого тона. Это связано с тем, что мощность анализируемого тона равна сумме мощностей коэффициентов спектра, из которых этот тон составлен.

(наведите мышь для выбора изображения)

Чтобы уменьшить эффект размытия спектра, сигнал перед вычислением FFT умножается на весовые окна – гладкие функции, похожие на гауссиан, спадающие к краям интервала. Они уменьшают размытие спектра за счёт некоторого ухудшения частотного разрешения. Если рассматривать FFT как набор полосовых фильтров, то весовые окна регулируют взаимное проникновение частотных полос.

Простейшее окно – прямоугольное: это константа 1, не меняющая сигнала. Оно эквивалентно отсутствию весового окна. Одно из популярных окон – окно Хэмминга. Оно уменьшает уровень размытия спектра примерно на 40 дБ относительно главного пика.

Весовые окна различаются по двум основным параметрам: степени расширения главного пика и степени подавления размытия спектра ("боковых лепестков"). Чем сильнее мы хотим подавить боковые лепестки, тем шире будет основной пик. Прямоугольное окно меньше всего размывает верхушку пика, но имеет самые высокие боковые лепестки. Окно Кайзера обладает параметром, который позволяет выбирать нужную степень подавления боковых лепестков.

Другой популярный выбор – окно Хана. Оно подавляет максимальный боковой лепесток слабее, чем окно Хэмминга, но зато остальные боковые лепестки быстрее спадают при удалении от главного пика. Окно Блэкмана обладает более сильным подавлением боковых лепестков, чем окно Хана.

Для большинства задач не очень важно, какой именно вид весового окна использовать. Главное, чтобы оно было. Популярный выбор – Хан или Блэкман. Использование весового окна уменьшает зависимость формы спектра от конкретной частоты сигнала и от её совпадения с сеткой частот FFT.

Рисунок 4 сделан для синусоид, однако, исходя из него, нетрудно представить, как будет выглядеть спектр реальных звуковых сигналов. Каждый пик в спектре будет иметь некоторую размытую форму, в зависимости от своей частоты и выбранного весового окна.

Чтобы компенсировать расширение пиков при применении весовых окон, можно использовать более длинные окна FFT: например, не 4096, а 8192 отсчета. Это улучшит разрешение анализа по частоте, но ухудшит по времени.

Спектрограмма

Часто возникает необходимость проследить, как спектр сигнала меняется во времени. FFT-анализаторы помогают сделать это в реальном времени при воспроизведении сигнала. Однако в ряде случаев оказывается удобна визуализация изменения спектра во всём звуковом отрывке сразу. Такое представление сигнала называется спектрограммой. Для её построения применяется оконное преобразование Фурье: спектр вычисляется от последовательных окон сигнала (рис. 5), и каждый из этих спектров образует столбец в спектрограмме.

По горизонтальной оси спектрограммы откладывается время, по вертикальной – частота, а амплитуда отображается яркостью или цветом. На спектрограмме гитарной ноты на рис. 6 видно развитие звучания: оно начинается с резкой атаки и продолжается в виде гармоник, кратных по частоте основному тону 440 Гц. Видно, что верхние гармоники имеют меньшую амплитуду и затухают быстрее, чем нижние. Также на спектрограмме прослеживается шум записи – равномерный фон тёмно-синего цвета. Справа показана шкала соответствия цветов и уровней сигнала (в децибелах ниже нуля).

(наведите мышь для выбора изображения)

Если менять размер окна FFT, становится хорошо видно, как меняется частотное и временное разрешение спектрограммы. При увеличении окна гармоники становятся тоньше, и их частота может быть определена более точно. Однако размывается во времени момент атаки (в левой части спектрограммы). При уменьшении размера окна наблюдается обратный эффект.

Особенно полезна спектрограмма при анализе быстро меняющихся сигналов. На рис. 7 показана спектрограмма вокального пассажа с вибрато. По ней легко определить такие характеристики голоса, как частота и глубина вибрато, его форма и ровность, наличие певческой форманты. По изменению высоты основного тона и гармоник прослеживается исполняемая мелодия.

(наведите мышь для выбора изображения)

Применения спектрограммы

Современные средства реставрации звука, такие как программа iZotope RX, активно используют спектрограмму для редактирования отдельных частотно-временных областей в сигнале. С помощью этой техники можно найти и подавить такие нежелательные призвуки, как звонок мобильного телефона во время важной записи, скрип стула пианиста, кашель в зрительном зале и т.п.

Читайте также:  Двигательный режим работы асинхронной машины

Проиллюстрируем использование спектрограммы для удаления свиста поклонников из концертной записи.

На рис. 8 свист легко находится: это светлая кривая линия в районе 3 кГц. Если бы частота свиста была постоянной, то его можно было бы подавить с помощью режекторного фильтра. Однако в нашем случае частота меняется. Для выделения свиста на спектрограмме удобно воспользоваться инструментом «волшебная палочка» из программы iZotope RX II. Одно нажатие приводит к выделению основного тона свиста, повторное нажатие выделяет гармоники. После этого свист можно удалить, просто нажав на клавишу Del. Однако более аккуратный способ – воспользоваться модулем Spectral Repair: это позволит избежать "дыр" в спектре после удаления свиста. После применения этого модуля в режиме ослабления с вертикальной интерполяцией (Attenuate vertically) свист практически полностью исчезает из записи: как визуально, так и на слух.

Еще одно полезное применение спектрограммы – анализ присутствия в записи следов компрессии MP3 или других кодеков с потерями. У большинства записей оригинального (несжатого) качества частотный диапазон простирается до 20 кГц и выше; при этом энергия сигнала плавно спадает с ростом частоты (как на рис. 6, 7). В результате психоакустической компрессии верхние частоты сигнала квантуются сильнее нижних, и верхняя граница спектра сигнала обнуляется (как на рис. 8). При этом частота среза зависит от содержания кодируемого сигнала и от битрейта кодера. Ясно, что кодер стремится обнулять только те частоты в сигнале, которые в данный момент не слышны (замаскированы). Поэтому частота среза, как правило, меняется во времени, что образует на спектрограмме характерную "бахрому" с островками энергии на тёмном фоне.

Спектрограмма часто позволяет найти в записи дефекты, которые неочевидны при прослушивании, но могут сказаться при последующей обработке. Например, паразитная наводка от ЭЛТ-видеомонитора на частоте 15–16 кГц может ускользнуть от уха пожилого звукорежиссёра. Однако спектрограмма ясно покажет её в виде горизонтальной линии (рис. 9) и позволит уточнить частоту для настройки режекторного фильтра.

Аналогичная ситуация иногда возникает и с низкочастотными помехами, такими как задувание ветра в микрофон или постоянная составляющая (смещение по постоянному току, DC offset). Они могут располагаться на инфранизких частотах и не обнаруживать себя без помощи спектроанализатора или осциллографа.

Заключение

Среди опытных звукорежиссёров старой школы распространено мнение, что анализировать и редактировать сигналы следует исключительно на слух, не полагаясь на индикаторы и анализаторы. Разумеется, анализаторы – не панацея в случае отсутствия слуха. Вряд ли кто-то серьёзно воспринимает идею сведения композиции "по приборам".

Не отрицая важности критического прослушивания звука на каждой стадии редактирования, мы всё же предлагаем использовать анализаторы спектра в тех задачах, где это может привести к более точным результатам. Конечно, можно определить на слух паразитный тон на частоте 15 кГц и подобрать режекторный фильтр подходящей добротности для его удаления. Но намного проще увидеть этот тон на спектроанализаторе и сразу более точно оценить его свойства: "плывёт" ли частота, есть ли боковые пики. В конечном счёте, это позволит более аккуратно удалить помеху. Аналогичная ситуация и со многими другими задачами редактирования, особенно – в реставрации звука.

Спектр и спектрограмма – способы представления звука, более близкие к слуховому восприятию, нежели осциллограмма. Надеюсь, что эта статья откроет новые возможности в анализе и редактировании звука для тех, кто ранее с этими представлениями не работал.

Спектроанализатор – что мы на нем видим?

Алексей Лукин

Спектроанализатор – прибор для измерения и отображения спектра сигнала – распределения энергии сигнала по частотам. В этой статье рассматриваются основные виды анализаторов спектра и иллюстрируется их применение для редактирования и реставрации звука. Особое внимание уделяется современным анализаторам, основанным на FFT – быстром преобразовании Фурье.

Зачем анализировать спектр?

Традиционно в цифровой звукозаписи аудиодорожка представляется в виде осциллограммы, отображающей форму звуковой волны (waveform), то есть зависимость амплитуды звука от времени. Такое представление достаточно наглядно для опытного звукорежиссёра: осциллограмма позволяет увидеть основные события в звуке, такие как изменения громкости, паузы между частями произведения и зачастую даже отдельные ноты в сольной записи инструмента. Но одновременное звучание нескольких инструментов на осциллограмме "смешивается" и визуальный анализ сигнала становится затруднительным. Тем не менее, наше ухо без труда различает отдельные инструменты в небольшом ансамбле. Как же это происходит?

Когда сложное звуковое колебание попадает на барабанную перепонку уха, оно с помощью серии слуховых косточек передаётся на орган, называемый улиткой. Улитка представляет собой закрученную в спираль эластичную трубочку. Толщина и жёсткость улитки плавно меняются от края к центру спирали. Когда сложное колебание поступает на край улитки, это вызывает ответные колебания разных частей улитки. При этом резонансная частота у каждой части улитки своя. Таким образом улитка раскладывает сложное звуковое колебание на отдельные частотные составляющие. К каждой части улитки подходят отдельные группы слуховых нервов, передающие информацию о колебаниях улитки в головной мозг (более подробно о слуховом восприятии можно прочитать в статье "Основы психоакустики" И. Алдошиной в журнале "Звукорежиссер" №6, 1999). В результате в мозг поступает информация о звуке, уже разложенная по частотам, и человек легко отличает высокие звуки от низких. Кроме того, как мы вскоре увидим, разложение звука на частоты помогает различить отдельные инструменты в полифонической записи, что значительно расширяет возможности редактирования.

Полосовые спектроанализаторы

Первые звуковые анализаторы спектра разделяли сигнал на частотные полосы с помощью набора аналоговых фильтров. Дисплей такого анализатора (рис. 1) показывает уровень сигнала во множестве частотных полос, соответствующих фильтрам.

На рис. 2 приведён пример частотных характеристик полосовых фильтров в анализаторе, удовлетворяющем стандарту ГОСТ 17168-82. Такой анализатор называется третьоктавным, так как в каждой октаве частотного диапазона имеется три полосы. Видно, что частотные характеристики полосовых фильтров перекрываются; их крутизна зависит от порядка используемых фильтров.

Важным свойством спектроанализатора является баллистика – инерционность измерителей уровня в частотных полосах. Она может регулироваться заданием скорости нарастания (атаки) и спада уровня. Типичное время атаки и спада в таком анализаторе – порядка 200 и 1500 мс.

Полосовые спектроанализаторы часто применяются для настройки АЧХ (амплитудно-частотной характеристики) акустических систем на концертных площадках. Если на вход такому анализатору подать розовый шум (имеющий одинаковую мощность в каждой октаве), то дисплей покажет горизонтальную линию, с возможной поправкой на вариацию шума во времени. Если розовый шум, проходя через звукоусилительную систему зала, исказился, то изменения его спектра будут видны на анализаторе. При этом анализатор, как и наше ухо, будет малочувствителен к узким провалам АЧХ (менее 1/3 октавы).

Преобразование Фурье

Преобразование Фурье – это математический аппарат для разложения сигналов на синусоидальные колебания. Например, если сигнал x(t) непрерывный и бесконечный по времени, то его можно представить в виде интеграла Фурье:

Интеграл Фурье собирает сигнал x(t) из бесконечного множества синусоидальных составляющих всевозможных частот ω, имеющих амплитуды Xω и фазы φω.

На практике нас больше интересует анализ конечных по времени звуков. Поскольку музыка не является статичным сигналом, её спектр меняется во времени. Поэтому при спектральном анализе нас обычно интересуют отдельные короткие фрагменты сигнала. Для анализа таких фрагментов цифрового аудиосигнала существует дискретное преобразование Фурье:

Здесь N отсчётов дискретного сигнала x(n) на интервале времени от 0 до N–1 синтезируются как сумма конечного числа синусоидальных колебаний с амплитудами Xk и фазами φk. Частоты этих синусоид равны kF/N, где F – частота дискретизации сигнала, а N – число отсчётов исходного сигнала x(n) на анализируемом интервале. Набор коэффициентов Xk называется амплитудным спектром сигнала. Как видно из формулы, частоты синусоид, на которые раскладывается сигнал, равномерно распределены от 0 (постоянная составляющая) до F/2 – максимально возможной частоты в цифровом сигнале. Такое линейное расположение частот отличается от распределения полос третьоктавного анализатора.

FFT-анализаторы

FFT (fast Fourier transform) – алгоритм быстрого вычисления дискретного преобразования Фурье. Благодаря ему стало возможным анализировать спектр звуковых сигналов в реальном времени.

Рассмотрим работу типичного FFT-анализатора. На вход ему поступает цифровой аудиосигнал. Анализатор выбирает из сигнала последовательные интервалы («окна»), на которых будет вычисляться спектр, и считает FFT в каждом окне для получения амплитудного спектра Xk. Вычисленный спектр отображается в виде графика зависимости амплитуды от частоты (рис. 3). Аналогично полосовым анализаторам, обычно используется логарифмический масштаб по осям частот и амплитуд. Но из-за линейного расположения полос FFT по частоте спектр может выглядеть недостаточно детальным на нижних частотах или излишне осциллирующим на верхних частотах.

Если рассматривать FFT как набор фильтров, то, в отличие от полосовых фильтров третьоктавного анализатора, фильтры FFT будут иметь одинаковую ширину в герцах, а не в октавах. Поэтому розовый шум на FFT-анализаторе будет уже не горизонтальной линией, а наклонной, со спадом 3 дБ/окт. Горизонтальной линией на FFT-анализаторе будет белый шум – он содержит равную энергию в равных линейных частотных интервалах.

Параметр N – число анализируемых отсчётов сигнала – имеет решающее значение для вида спектра. Чем больше N, тем плотнее сетка частот, по которым FFT раскладывает сигнал, и тем больше деталей по частоте видно на спектре. Для достижения более высокого частотного разрешения приходится анализировать более длинные участки сигнала. Если сигнал в пределах окна FFT меняет свои свойства, то спектр будет отображать некоторую усреднённую информацию о сигнале со всего интервала окна.

Читайте также:  Драйвера для zyxel keenetic lite

Когда нужно проанализировать быстрые изменения в сигнале, длину окна N выбирают маленькой. В этом случае разрешение анализа по времени увеличивается, а по частоте – уменьшается. Таким образом, разрешение анализа по частоте обратно пропорционально разрешению по времени. Этот факт называется соотношением неопределённостей.

Весовые окна

Один из простейших звуковых сигналов – синусоидальный тон. Как будет выглядеть его спектр на FFT-анализаторе? Оказывается, это зависит от частоты тона. Мы знаем, что FFT раскладывает сигнал не по тем частотам, которые на самом деле присутствуют в сигнале, а по фиксированной равномерной сетке частот. Например, если частота дискретизации равна 48 кГц и размер окна FFT выбран 4096 отсчётов, то FFT раскладывает сигнал по 2049 частотам: 0 Гц, 11.72 Гц, 23.44 Гц, . 24000 Гц.

Если частота тона совпадает с одной из частот сетки FFT, то спектр будет выглядеть "идеально": единственный острый пик укажет на частоту и амплитуду тона (рис. 4, белый график).

Если же частота тона не совпадает ни с одной из частот сетки FFT, то FFT "соберёт" тон из имеющихся в сетке частот, скомбинированных с различными весами. График спектра при этом размывается по частоте (рис. 4, зелёный график). Такое размытие обычно нежелательно, так как оно может закрыть собой более слабые звуки на соседних частотах. Можно также заметить, что амплитуда максимума зелёного графика ниже реальной амплитуды анализируемого тона. Это связано с тем, что мощность анализируемого тона равна сумме мощностей коэффициентов спектра, из которых этот тон составлен.

(наведите мышь для выбора изображения)

Чтобы уменьшить эффект размытия спектра, сигнал перед вычислением FFT умножается на весовые окна – гладкие функции, похожие на гауссиан, спадающие к краям интервала. Они уменьшают размытие спектра за счёт некоторого ухудшения частотного разрешения. Если рассматривать FFT как набор полосовых фильтров, то весовые окна регулируют взаимное проникновение частотных полос.

Простейшее окно – прямоугольное: это константа 1, не меняющая сигнала. Оно эквивалентно отсутствию весового окна. Одно из популярных окон – окно Хэмминга. Оно уменьшает уровень размытия спектра примерно на 40 дБ относительно главного пика.

Весовые окна различаются по двум основным параметрам: степени расширения главного пика и степени подавления размытия спектра ("боковых лепестков"). Чем сильнее мы хотим подавить боковые лепестки, тем шире будет основной пик. Прямоугольное окно меньше всего размывает верхушку пика, но имеет самые высокие боковые лепестки. Окно Кайзера обладает параметром, который позволяет выбирать нужную степень подавления боковых лепестков.

Другой популярный выбор – окно Хана. Оно подавляет максимальный боковой лепесток слабее, чем окно Хэмминга, но зато остальные боковые лепестки быстрее спадают при удалении от главного пика. Окно Блэкмана обладает более сильным подавлением боковых лепестков, чем окно Хана.

Для большинства задач не очень важно, какой именно вид весового окна использовать. Главное, чтобы оно было. Популярный выбор – Хан или Блэкман. Использование весового окна уменьшает зависимость формы спектра от конкретной частоты сигнала и от её совпадения с сеткой частот FFT.

Рисунок 4 сделан для синусоид, однако, исходя из него, нетрудно представить, как будет выглядеть спектр реальных звуковых сигналов. Каждый пик в спектре будет иметь некоторую размытую форму, в зависимости от своей частоты и выбранного весового окна.

Чтобы компенсировать расширение пиков при применении весовых окон, можно использовать более длинные окна FFT: например, не 4096, а 8192 отсчета. Это улучшит разрешение анализа по частоте, но ухудшит по времени.

Спектрограмма

Часто возникает необходимость проследить, как спектр сигнала меняется во времени. FFT-анализаторы помогают сделать это в реальном времени при воспроизведении сигнала. Однако в ряде случаев оказывается удобна визуализация изменения спектра во всём звуковом отрывке сразу. Такое представление сигнала называется спектрограммой. Для её построения применяется оконное преобразование Фурье: спектр вычисляется от последовательных окон сигнала (рис. 5), и каждый из этих спектров образует столбец в спектрограмме.

По горизонтальной оси спектрограммы откладывается время, по вертикальной – частота, а амплитуда отображается яркостью или цветом. На спектрограмме гитарной ноты на рис. 6 видно развитие звучания: оно начинается с резкой атаки и продолжается в виде гармоник, кратных по частоте основному тону 440 Гц. Видно, что верхние гармоники имеют меньшую амплитуду и затухают быстрее, чем нижние. Также на спектрограмме прослеживается шум записи – равномерный фон тёмно-синего цвета. Справа показана шкала соответствия цветов и уровней сигнала (в децибелах ниже нуля).

(наведите мышь для выбора изображения)

Если менять размер окна FFT, становится хорошо видно, как меняется частотное и временное разрешение спектрограммы. При увеличении окна гармоники становятся тоньше, и их частота может быть определена более точно. Однако размывается во времени момент атаки (в левой части спектрограммы). При уменьшении размера окна наблюдается обратный эффект.

Особенно полезна спектрограмма при анализе быстро меняющихся сигналов. На рис. 7 показана спектрограмма вокального пассажа с вибрато. По ней легко определить такие характеристики голоса, как частота и глубина вибрато, его форма и ровность, наличие певческой форманты. По изменению высоты основного тона и гармоник прослеживается исполняемая мелодия.

(наведите мышь для выбора изображения)

Применения спектрограммы

Современные средства реставрации звука, такие как программа iZotope RX, активно используют спектрограмму для редактирования отдельных частотно-временных областей в сигнале. С помощью этой техники можно найти и подавить такие нежелательные призвуки, как звонок мобильного телефона во время важной записи, скрип стула пианиста, кашель в зрительном зале и т.п.

Проиллюстрируем использование спектрограммы для удаления свиста поклонников из концертной записи.

На рис. 8 свист легко находится: это светлая кривая линия в районе 3 кГц. Если бы частота свиста была постоянной, то его можно было бы подавить с помощью режекторного фильтра. Однако в нашем случае частота меняется. Для выделения свиста на спектрограмме удобно воспользоваться инструментом «волшебная палочка» из программы iZotope RX II. Одно нажатие приводит к выделению основного тона свиста, повторное нажатие выделяет гармоники. После этого свист можно удалить, просто нажав на клавишу Del. Однако более аккуратный способ – воспользоваться модулем Spectral Repair: это позволит избежать "дыр" в спектре после удаления свиста. После применения этого модуля в режиме ослабления с вертикальной интерполяцией (Attenuate vertically) свист практически полностью исчезает из записи: как визуально, так и на слух.

Еще одно полезное применение спектрограммы – анализ присутствия в записи следов компрессии MP3 или других кодеков с потерями. У большинства записей оригинального (несжатого) качества частотный диапазон простирается до 20 кГц и выше; при этом энергия сигнала плавно спадает с ростом частоты (как на рис. 6, 7). В результате психоакустической компрессии верхние частоты сигнала квантуются сильнее нижних, и верхняя граница спектра сигнала обнуляется (как на рис. 8). При этом частота среза зависит от содержания кодируемого сигнала и от битрейта кодера. Ясно, что кодер стремится обнулять только те частоты в сигнале, которые в данный момент не слышны (замаскированы). Поэтому частота среза, как правило, меняется во времени, что образует на спектрограмме характерную "бахрому" с островками энергии на тёмном фоне.

Спектрограмма часто позволяет найти в записи дефекты, которые неочевидны при прослушивании, но могут сказаться при последующей обработке. Например, паразитная наводка от ЭЛТ-видеомонитора на частоте 15–16 кГц может ускользнуть от уха пожилого звукорежиссёра. Однако спектрограмма ясно покажет её в виде горизонтальной линии (рис. 9) и позволит уточнить частоту для настройки режекторного фильтра.

Аналогичная ситуация иногда возникает и с низкочастотными помехами, такими как задувание ветра в микрофон или постоянная составляющая (смещение по постоянному току, DC offset). Они могут располагаться на инфранизких частотах и не обнаруживать себя без помощи спектроанализатора или осциллографа.

Заключение

Среди опытных звукорежиссёров старой школы распространено мнение, что анализировать и редактировать сигналы следует исключительно на слух, не полагаясь на индикаторы и анализаторы. Разумеется, анализаторы – не панацея в случае отсутствия слуха. Вряд ли кто-то серьёзно воспринимает идею сведения композиции "по приборам".

Не отрицая важности критического прослушивания звука на каждой стадии редактирования, мы всё же предлагаем использовать анализаторы спектра в тех задачах, где это может привести к более точным результатам. Конечно, можно определить на слух паразитный тон на частоте 15 кГц и подобрать режекторный фильтр подходящей добротности для его удаления. Но намного проще увидеть этот тон на спектроанализаторе и сразу более точно оценить его свойства: "плывёт" ли частота, есть ли боковые пики. В конечном счёте, это позволит более аккуратно удалить помеху. Аналогичная ситуация и со многими другими задачами редактирования, особенно – в реставрации звука.

Спектр и спектрограмма – способы представления звука, более близкие к слуховому восприятию, нежели осциллограмма. Надеюсь, что эта статья откроет новые возможности в анализе и редактировании звука для тех, кто ранее с этими представлениями не работал.

Ссылка на основную публикацию
Смарт часы что они умеют
В этой статье мы поговорим о том, для чего нужны умные часы, а также какими функциями они располагают чаще всего....
Сервер не поддерживает символы не ascii
Многие из нас пользуются замечательным FTP сервером FileZilla Server. Думаю, не я один столкнулся с проблемой некорректного отображения русских букв...
Сервера для обновления nod32 бесплатно
Отличие полной версии от триальной Полные (не триальные) антивирусные базы и программные компоненты Eset Antivirus и Eset Smart Security! Отличия...
Смарт часы самсунг с сим картой
Хотите быть современным и модным человеком? Перестать зависеть от своего громоздкого смартфона? Только представьте, вы можете не брать телефон на...
Adblock detector