Сканирование радужной оболочки глаза

Сканирование радужной оболочки глаза

Технология сканирования радужной оболочки глаза была впервые предложена в 1936 году офтальмологом Франком Буршем. Он заявил, что радужная оболочка глаза каждого человека является уникальной. Вероятность ее совпадения составляет примерно 10 в минус 78-ой степени, что значительно выше, чем при дактилоскопии. Согласно теории вероятности, за всю историю человечества еще не было двух людей, у которых бы совпал узор глаза. В начале 90-х Джон Дафман из компании Iridian Technologies запатентовал алгоритм для обнаружения различий радужной оболочки глаза. На данный момент этот способ биометрической аутентификации является одним из наиболее эффективных и производится с помощью специального сенсора — иридосканера. Как же он работает — об этом в сегодняшнем выпуске!

Радужная оболочка глаза — это тонкая подвижная диафрагма со зрачком в центре, которая расположена за роговицей перед хрусталиком глаза. Она образовывается ещё до рождения человека и не меняется на протяжении всей жизни. По текстуре радужная оболочка напоминает сеть с большим количеством кругов, при этом ее рисунок очень сложен, что позволяет отобрать порядка 200 точек, с помощью которых обеспечивается высокая степень надежности аутентификации.

Не так давно идентификация людей по радужной оболочке глаз казалась фантастической технологией, использующейся только для защиты суперсекретных военных и правительственных объектов. Но с развитием искусственного интеллекта биометрический анализ проник в обычные смартфоны и уже умеет узнавать владельца по лицу. В этой статье мы расскажем, как с помощью нейросетей можно распознать радужную оболочку глаз по фотографиями, снятым на камеру телефона.

Введение

Радужная оболочка — видимая невооружённым взглядом часть глаза, располагающаяся между зрачком и склерой. Рисунок оболочки уникален для каждого человека и не меняется с возрастом, поэтому технология его распознавания является одной из самых эффективных способов идентификации личности. Традиционные системы безопасности используют инфракрасные камеры и излучатели, позволяющие наблюдать гораздо больше деталей текстуры. Но конструктивно их довольно тяжело использовать в обычных смартфонах из-за большой мощности и тепловыделения. Поэтому возникла необходимость научиться распознавать радужную оболочку в видимом свете.

Одно из исследований проводилось в рамках конкурса NICE (Noisy Iris Challenge Evaluation) с использованием набора данных UBIRIS (University of Beira Iris). Датасет содержит изображения глаз, снятые с расстояния от четырёх до восьми метров в различных условиях. Многие фотографии сделаны с плохой фокусировкой, неудачным углом обзора, плохим освещением и другими зашумлениями для имитации реальных трудностей, с которыми можно столкнуться при распознавании радужной оболочки. На рисунке ниже показаны примеры снимков низкого качества.

(a) — глаза находятся за очками, (b) — взгляд под углом и блик, (c) — размытие, (d) — глаз закрыт веком и ресницами

Для этой задачи применяются как алгоритмические, так и нейросетевые методы. Исследователи из университета Донгук разработали два новых метода, основанных на свёрточных нейронных сетях. Первый метод применяется только к обычным фотографиям и использует три свёрточных архитектуры. Второй алгоритм основан на нейросети IrisDenseNet и может применяться как к изображениям, снятым при видимом свете, так и к инфракрасным снимкам.

Метод 1. Три нейросети

Общий ход алгоритма показан на рисунке ниже. Сначала по исходной фотографии определяется радужная оболочка и зрачок. Затем идентифицируются две периокулярные зоны, которые немного шире, чем область оболочки. Обнаруженные регионы преобразуются в три нормализованных изображения с полярными координатами, чтобы вычислить радиус радужной оболочки. Полученные кадры используются в качестве входных данных для трёх CNN, которые извлекают из них особые признаки и вычисляют расстояние (оценку) между обнаруженными и истинными признаками. Путём слияния трёх значений вычисляется общая оценка, на основе которой выполняется распознавание радужной оболочки.

Читайте также:  Hp support assistant что это за программа

— Получение трёх изображений

Периокулярные области помогают в тех случаях, когда рисунок радужки плохо различим из-за различных искажений. Они расширяют исследуемую зону, чтобы в дальнейшем избежать потери важных деталей и точнее выполнить нормализацию.

— Нормализация

Размер радужных оболочек может отличаться даже у глаз одного человека. Кроме того, зрачок может расширяться или сужаться при изменении уровня освещения. Чтобы эти факторы не влияли на процесс, выполняется нормализация полученных областей в изображения с полярными координатами, разделённые на секторы — одинаковые участки размером в один пиксель. Всего получается 8×256 секторов.

— CNN

Традиционные архитектуры, такие как AlexNet и VGGNet, обычно принимают на вход квадратные фотографии и используют симметричные фильтры. Однако полученные в результате нормализации изображения имеют несимметричный размер (8×256), поэтому предварительно обученные CNN для них не подходят. Чтобы решить эту проблему, исследователи предложили новую структуру нейросети с несимметричными фильтрами.

Сеть состоит из восьми свёрточных слоёв и использует нестандартные размеры фильтров: 1x13x3, 1x13x64, 1x13x128 и так далее. Причины использования таких размеров заключались в том, что ширина изображения в полярных координатах намного превышает высоту, а вертикальная корреляция рисунка радужки больше, чем горизонтальная. Следовательно, эту избыточность можно уменьшить только с помощью фильтра, ширина которого намного больше высоты.

Завершают структуру три полносвязных слоя. Подобная архитектура используется для всех трёх свёрточных нейросетей.

— Результаты экспериментов

Используемый датасет NICE.II содержит 1000 фотографий глаз и 171 класс. Для качественного обучения нейросети такого объёма данных обычно недостаточно. Поэтому датасет был дополнен до 81000 образцов с помощью различных операций над изображениями, а затем разделён на две подвыборки A и B примерно по 40000 образцов в каждой.

Для обучения нейросети использовался фреймворк Caffe, кросс-энтропийная функция потерь и оптимизатор Adam.

Оценка точности модели проводилась с помощью биометрических метрик:

— ложное распознавание (False Access Rate, FAR)

— отказ распознавания (False Reject Rate, FRR)

Уровень ошибок в случае, когда FAR=FRR, называется EER (equal error rate) и обычно применяется для сравнения разных биометрических методов (чем он меньше, тем лучше). Также для оценки модели использовался индекс чувствительности (d-Prime Value) — чем выше его значение, тем эффективнее работает биометрическая система.

Чтобы оценить модель на фотографиях, снятых на обычные смартфоны, исследователи провели эксперимент с датасетом MICHE. Он содержит снимки глаз, сделанные на iPhone 5, Galaxy Tab2 и Galaxy S4. В таблице ниже можно увидеть сравнение описанного метода с другими существующими алгоритмами. Оценки ERR и d-Prime показывают, что решение достигает более высокой точности.

В дальнейшем исследователи планируют улучшить точность распознавания, разработав более глубокую структуру CNN и дополнив её другими методами извлечения признаков из изображений.

Метод 2. IrisDenseNet

Алгоритм также предназначен для распознавания радужной оболочки глаза по обычным фотографиям. Исходное изображение отправляется в свёрточную нейросеть IrisDenseNet без какой-либо предварительной обработки. В процессе распознавания модель определяет семантическую сегментацию для радужной оболочки.

На рисунке ниже показана архитектура нейросети. Она состоит из 13 слоёв и использует сочетание двух методов: свёрточная сеть с усиленным распространением признаков (DenseNet) и сеть типа энкодер-декодер SegNet. Это позволяет значительно улучшить процесс извлечения и распознавания признаков.

Читайте также:  Как назвать компьютерный клуб

Архитектура включает пакетную нормализацию и функцию активации ReLU. Нейросеть обучалась с нуля на упомянутом наборе данных NICE.II, который также был расширен с помощью различных методов дополнения данных.

На рисунке ниже показаны успешные результаты сегментации, полученные IrisDenseNet.Эффективность метода измеряется метрикой Ea — средней ошибкой (чем меньше, тем лучше). Для наглядного представления результата определены два типа ошибок: ложноположительная и ложноотрицательная. Первая — ложноположительная классификация пикселя, не принадлежащего радужной оболочке, а вторая — ложноотрицательная классификация пикселя оболочки. Ложноположительные и отрицательные ошибки отмечены зелёным и красным цветами соответственно.

Алгоритм также был протестирован на наборе данных MICHE и показал следующие результаты:

Видно, что метод превосходит предыдущие. Исследователи планируют оптимизировать его, уменьшив число слоёв нейросети без потери точности, чтобы сделать её более быстрой и доступной для использования на смартфонах.

Распознавание радужной оболочки — инновационный и надёжный метод биометрической аутентификации. Искусственный интеллект делает эту технологию более доступной для использования в камерах видеонаблюдения, смартфонах и прочих способах контроля доступа и безопасности. Кроме того, такая идентификация снизила бы риск отказа систем распознавания лиц.

В следующей части статьи мы покажем практический кейс для распознавания и отслеживания глаз в реальном времени. Пишите в комментариях, пользуетесь ли вы биометрическими сенсорами? Снимаете блокировку отпечатком пальца, или может применяете Face Unlock?

C оригинальными материалами (1, 2) можно ознакомиться на сайте Национального центра биотехнологической информации.

Дактилоскопия — наиболее известный и распространенный метод установления личности по биометрическому параметру, отлично зарекомендовала себя в криминалистике XX века и помогла раскрыть ни одну сотню преступлений. Однако технологии не стоят на месте, и отпечатки пальцев перестали быть единственным «ключом» к идентификации.

Современная техника научились узнавать пользователей по сетчатке и радужной оболочке глаза, форме лица и рук и ряду динамических характеристик — голосу, биологической активности сердца, рукописному и клавиатурному почерку.

Идентификация по радужной оболочке глаза

Подобно отпечатку пальца, рисунок радужной оболочки глаза является уникальной характеристикой человека, а метод установления личности по этому биометрическому параметру, по мнению экспертов, превосходит в надежности привычную дактилоскопию. Для того, чтобы зафиксировать узор на радужке, нужна фотокамера с высоким разрешением. Полученное изображение увеличивается и преобразуется в уникальный код, присваиваемый человеку.

Рисунок радужки, который окончательно формируется на втором году жизни ребенка, практически не изменяется в течение жизни, если человек не получает травм и не страдает от серьезных офтальмологических патологий. В то же время, папиллярный узор отпечатка пальца подвержен изменению даже в результате мелких бытовых повреждений — ожогов или порезов, что делает этот метод идентификации менее эффективным, чем анализ радужной оболочки.

Достоинством метода является и простота в сканировании. Человеку не обязательно сосредоточенно смотреть в одну точку, ведь пятна на сетчатке находятся прямо на поверхности глазного яблока и легко считываются на расстоянии, не превышающем 1 метр. Использовать данный метод удобно в банковских организациях или общественном транспорте. Заинтересовались технологией и производители смартфонов — в 2015 году в Японии в продажу поступила первая модель со сканером радужной оболочки — Fujitsu Arrows NX F-04G. По мнению разработчиков, внедрение технологии идентификации по радужке глаза поможет защитить личные данные владельцев смартфонов.

Идентификация по сетчатке

Просканировать сетчатку — внутреннюю оболочку глазного яблока, реагирующую на свет, сложнее: для этого к кровеносным сосудам задней стенки глаза через зрачок посылают низкоинтенсивные инфракрасные световые лучи. Подобный метод установления личности считается высокоэффективным и активно используется на правительственных и военных объектах.

Читайте также:  Для чего нужен интернет контроллер

Капилярный рисунок сетчатки различается даже у близнецов, что снижает вероятность ошибки идентификации. Однако, в 2012 году ученые из Университета Нотр-Дам в США обнаружили погрешности в определении личностей людей, чьи данные были внесены в базу ранее 2008 года, и доказали, что, в отличие от рисунка на радужной оболочке, рисунок сетчатки подвержен ряду возрастных изменений.

И снова производители мобильных гаджетов не остались в стороне. Ряд компаний (например, китайская ZTE CORPORATION) работает на созданием комбинированных технологий идентификации по сетчатке и радужке.

Распознавание по «геометрии» лица

Метод установления личности по чертам кажется экспертам одним из наиболее перспективных, во многом благодаря своей «привычности»: люди с легкостью идентифицируют друг друга по лицам, так почему бы не научить этому компьютер? В основе технологии — создание двухмерных или трехмерных «карт» человеческих черт — система запоминает и опознает контуры носа и губ, форму бровей, расстояние между отдельными чертами.

Разработчики систем биометрического анализа отечественной компании BioLink называют распознавание по лицу второй по распространенности и популярности биометрической технологией. Однако, «опознание» по геометрии лица — задача трудоемкая, ведь на восприятие машины влияет освещение, угол наклона головы, наличие макияжа.

Наиболее эффективно техника распознает статичные изображения — фотографии. Так, система искусственного интеллекта FaceNet, созданная Google, “опознала” 99,63% фото пользователей интернета.

Распознавание по биологической активности сердца

Одна из новейших технологий динамической биометрической идентификации — установление личности на основе данных о работе сердечно-сосудистой системы.

В 2014 году Канадская компания Bionym представила миру устройство, позволяющее использовать ЭКГ человека в качестве персонального идентификатора. «В научном сообществе существует устоявшаяся идея о том, что уникальность и постоянство человеческого сердечного ритма позволяет использовать его в качестве биометрического идентификатора», — заметил генеральный директор Bionym Карл Мартин. — «В сущности, нужно сделать следующее: взять форму ЭКГ и подвергнуть ее машинному анализу, чтобы выявить уникальные и постоянные особенности».

Высокую эффективность технологии отметили отечественные специалисты по безопасности. «Кардиограмма, как оказывается, тоже может быть вполне перспективным средством биометрической аутентификации,» — отмечали эксперты «Лаборатории Касперского».

Подобные разработки уже сейчас ведутся в России. Например, представители отечественной компании CardioQVARK (о них уже были статьи на Хабре и Гиктаймс), производящей чехлы-кардиомониторы для iPhone, в работе «Исследование искусственных нейронных сетей в задаче идентификации личности по электрокардиосигналу» показали, что их продукт может помочь в установлении личности пользователей.

Основное назначение устройства — удаленный контроль за состоянием здоровья пациентов-сердечников, однако возможность сделать экспресс-анализ состояния сердечно-сосудистой системы позволит идентифицировать человека без временных затрат. Процедура снятия ЭКГ при помощи чехла от CardioQVARK предельно проста и занимает всего лишь несколько секунд: достаточно приложить пальцы к датчикам и результат ЭКГ появится на экране гаджета и в приложении для врача.

Анализ голоса

Биометрический метод идентификации по голосу прост в применении — достаточно оснастить аналитическое устройство микрофоном и записать «звучание» конкретного человека. Широкое распространение данного метода обусловлено наличием микрофона и возможности записи звука на большинстве современных мобильных гаджетов и компьютеров. Однако, технология имеет ряд существенных недостатков: голос одного и того же человека может звучать по-разному в зависимости от его психологического и физического состояния, уровня шума, качества микрофона.

Ссылка на основную публикацию
Сервер не поддерживает символы не ascii
Многие из нас пользуются замечательным FTP сервером FileZilla Server. Думаю, не я один столкнулся с проблемой некорректного отображения русских букв...
Ресивер пионер vsx 528
5.1 канальный AV ресивер Pioneer VSX-528 с 6x HDMI, AirPlay, DLNA, MHL, сквозным сигналом Ultra HD 4K и Интернет-радио vTuner....
Ресивер для нтв плюс какой лучше
Телекомпания НТВ‑ПЛЮС гарантирует получение качественных услуг, а также обеспечение корректного доступа к каналам и дополнительным сервисам Телекомпании, только при условии...
Сервера для обновления nod32 бесплатно
Отличие полной версии от триальной Полные (не триальные) антивирусные базы и программные компоненты Eset Antivirus и Eset Smart Security! Отличия...
Adblock detector