Система уравнений имеет единственное решение если

Система уравнений имеет единственное решение если

Системой m линейных уравнений с n неизвестными называется система вида

где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

  1. Система может иметь единственное решение.
  2. Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
  3. И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Рассмотрим способы нахождения решений системы.

МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче AX=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A: . Поскольку A -1 A = E и EX = X, то получаем решение матричного уравнения в виде X = A -1 B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B.

Примеры. Решить системы уравнений.

Найдем матрицу обратную матрице A.

,

Таким образом, x = 3, y = – 1.

Решите матричное уравнение: XA+B=C, где

Выразим искомую матрицу X из заданного уравнения.

Найдем матрицу А -1 .

Решите матричное уравнение AX+B=C, где

Из уравнения получаем .

Следовательно,

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

Сложим эти уравнения:

Читайте также:  Телевизор dexp пульт xiaomi

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

.

Далее рассмотрим коэффициенты при x2:

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений

Решите систему уравнений при различных значениях параметра p:

Система имеет единственное решение, если Δ ≠ 0.

. Поэтому .

  1. При
  2. При p = 30 получаем систему уравнений которая не имеет решений.
  3. При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений x=y,y Î R.

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.

Вернувшись к системе уравнений, будем иметь

Выпишем расширенную матрицу системы и сведем ее к треугольному виду.

Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.

Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.

Вернемся к системе уравнений.

Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.

Таким образом, система имеет бесконечное множество решений.

СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

I. Постановка задачи.

II. Совместность однородных и неоднородных систем.

III. Система т уравнений с т неизвестными. Правило Крамера.

IV. Матричный метод решения систем уравнений.

I. Постановка задачи.

(1)

называют системой m линейных уравнений с n неизвестными . Коэффициенты уравнений этой системы записывают в виде матрицы

которую называют матрицей системы (1).

Читайте также:  Как сделать форму невидимой

Числа, стоящие в правых частях уравнений, образуют столбец свободных членов <B>:

.

Если столбец <B>=<>, то система уравнений называется однородной. В противном случае, когда <B>≠<> – система неоднородна.

Система линейных уравнений (1) может быть записана в матричном виде

Здесь — столбец неизвестных.

Решить систему уравнений (1) — значит найти совокупность n чисел такую, что при подстановке в систему (1) вместо неизвестных каждое уравнение системы обращается в тождество. Числа называются решением системы уравнений.

,

может иметь бесчисленное множество решений

или не иметь решений совсем

.

Системы уравнений, не имеющие решений, называются несовместными. Если система уравнений имеет хотя бы одно решение, то она называется совместной. Система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если имеет бесчисленное множество решений.

II. Совместность однородных и неоднородных систем.

Условие совместности системы линейных уравнений (1) формулируется в теореме Кронекера-Капелли: система линейных уравнений имеет хотя бы одно решение в том и только в том случае, когда ранг матрицы системы равен рангу расширенной матрицы: .

Расширенной матрицей системы называют матрицу, получающуюся из матрицы системы приписыванием к ней справа столбца свободных членов:

.

Если RgA * , то система уравнений несовместна.

Однородные системы линейных уравнений в соответствии с теоремой Кронекера-Капелли всегда совместны. Рассмотрим случай однородной системы, в которой число уравнений равно числу неизвестных, то есть т=п. Если определитель матрицы такой системы не равен нулю, т.е. , однородная система имеет единственное решение, которое является тривиальным (нулевым). Однородные системы имеют бесчисленное множество решений, если среди уравнений системы есть линейно зависимые, т.е..

Пример. Рассмотрим однородную систему трех линейных уравнений с тремя неизвестными:

и исследуем вопрос о количестве ее решений. Каждое из уравнений можно считать уравнением плоскости, проходящей через начало координат (D=0). Система уравнений имеет единственное решение, когда все три плоскости пересекаются в одной точке. При этом их нормальные векторы некомпланарны, и, следовательно, выполняется условие

.

Если хотя бы две из трех плоскостей, например, первая и вторая, параллельны, т.е. , то определитель матрицы системы равен нулю, а система имеет бесчисленное множество решений. Причем решениями будут координаты x, y, z всех точек, лежащих на прямой

.

Если же все три плоскости совпадают, то система уравнений сведется к одному уравнению

,

а решением будут координаты всех точек, лежащих в этой плоскости.

При исследовании неоднородных систем линейных уравнений вопрос о совместности решается с помощью теоремы Кронекера-Капелли. Если же число уравнений в такой системе равно числу неизвестных, то система имеет единственное решение, если ее определитель не равен нулю. В противном случае система либо несовместна, либо имеет бесчисленное множество решений.

Пример. Исследуем неоднородную систему двух уравнений с двумя неизвестными

.

RgA=1 , т.к. ,

а ранг расширенной матрицы равен двум, т. к. для нее в качестве базисного минора может быть выбран минор второго порядка, содержащий третий столбец.

В рассматриваемом случае RgA * .

Если прямые совпадают, т.е. , то система уравнений имеет бесчисленное множество решений: координаты точек на прямой . В этом случае RgA=RgA * =1.

Система имеет единственное решение, когда прямые не параллельны, т.е. . Решением этой системы являются координаты точки пересечения прямых

III. Система т уравнений с т неизвестными. Правило Крамера.

Читайте также:  Почему не запускаются wot

Рассмотрим простейший случай, когда число уравнений системы равно числу неизвестных, т.е. m=n. Если детерминант матрицы системы отличен от нуля, решение системы может быть найдено по правилу Крамера:

(3)

Здесь — определитель матрицы системы,

— определитель матрицы, получаемой из [A] заменой i-ого столбца на столбец свободных членов:

.

Пример. Решить систему уравнений методом Крамера.

1) найдем определитель системы

2) найдем вспомогательные определители

3) найдем решение системы по правилу Крамера:

Результат решения может быть проверен подстановкой в систему уравнений

Получены верные тождества.

IV. Матричный метод решения систем уравнений.

и умножим правую и левую части соотношения (2) слева на матрицу [A -1 ], обратную матрице системы:

По определению обратной матрицы произведение [A -1 ][A]=[E], а по свойствам единичной матрицы [E]<x>=<x>. Тогда из соотношения (2′) получаем

Соотношение (4) лежит в основе матричного метода решения систем линейных уравнений: необходимо найти матрицу, обратную матрице системы, и умножить на нее слева вектор-столбец правых частей системы.

Пример. Решим матричным методом систему уравнений, рассмотренную в предыдущем примере.

Матрица системы ее определитель detA==183.

Чтобы найти матрицу [A -1 ], найдем матрицу, присоединенную к [A]:

или

В формулу для вычисления обратной матрицы входит , тогда

Теперь можно найти решение системы

Тогда окончательно получаем .

При большом числе неизвестных решение системы уравнений методом Крамера или матричным методом связано с вычислением определителей высокого порядка или обращением матриц больших размеров. Эти процедуры весьма трудоемки даже для современных ЭВМ. Поэтому для решения систем большого числа уравнений чаще пользуются методом Гаусса.

Метод Гаусса заключается в последовательном исключении неизвестных путем элементарных преобразований расширенной матрицы системы. К элементарным преобразованиям матрицы относят перестановку строк, сложение строк, умножение строк на числа, отличные от нуля. В результате преобразований удается матрицу системы свести к верхней треугольной, на главной диагонали которой стоят единицы, а ниже главной диагонали — нули. В этом заключается прямой ход метода Гаусса. Обратный ход метода состоит в непосредственном определении неизвестных, начиная с последнего.

Проиллюстрируем метод Гаусса на примере решения системы уравнений

На первом шаге прямого хода добиваются того, чтобы коэффициент преобразованной системы стал равен 1, а коэффициенты и обратились в ноль. Для этого первое уравнение умножим на 1/10, второе уравнение умножим на 10 и сложим с первым, третье уравнение умножим на -10/2 и сложим с первым. После этих преобразований получим

На втором шаге добиваемся того, чтобы после преобразований коэффициент стал равным 1, а коэффициент . Для этого второе уравнение разделим на 42, а третье уравнение умножим на -42/27 и сложим со вторым. Получим систему уравнений

На третьем шаге должны получить коэффициент . Для этого третье уравнение разделим на (37 — 84/27); получим

На этом прямой ход метода Гаусса заканчивается, т.к. матрица системы сведена к верхней треугольной:

Ответ

Проверено экспертом

— домножим верхнее уравнение на 3, нижнее на 4

— вычтем из верхнего уравнения нижнее

Ответ: вариант 1)

  • Комментарии (1)
  • Отметить нарушение

Ответ

Из уранения 1 выразим переменную х

Подставим вместо переменной х

Приводим дроби к общему знаменателю

Подставим вместо переменной у

Ответ:
В вашем варианте ответ номер 1

Ссылка на основную публикацию
Сервер не поддерживает символы не ascii
Многие из нас пользуются замечательным FTP сервером FileZilla Server. Думаю, не я один столкнулся с проблемой некорректного отображения русских букв...
Ресивер пионер vsx 528
5.1 канальный AV ресивер Pioneer VSX-528 с 6x HDMI, AirPlay, DLNA, MHL, сквозным сигналом Ultra HD 4K и Интернет-радио vTuner....
Ресивер для нтв плюс какой лучше
Телекомпания НТВ‑ПЛЮС гарантирует получение качественных услуг, а также обеспечение корректного доступа к каналам и дополнительным сервисам Телекомпании, только при условии...
Сервера для обновления nod32 бесплатно
Отличие полной версии от триальной Полные (не триальные) антивирусные базы и программные компоненты Eset Antivirus и Eset Smart Security! Отличия...
Adblock detector