Система из трех уравнений с тремя неизвестными

Система из трех уравнений с тремя неизвестными

Присоединим к уравнениям

Получили систему трёх уравнений с тремя неизвестными.

Прежде всего заметим, что все свойства, о которых говорилось в § 48, остаются справедливыми и для системы уравнений с тремя (и более) неизвестными. Поэтому для решения данной системы применимы те же способы, что и для решения системы двух уравнений с двумя неизвестными.

1. Способ алгебраического сложения.

Так как уравнение (3) уже не содержит х, то исключим х из системы уравнений (1) и (2). Для этого умножим обе части уравнения (2) на 15. Получим систему:

Коэффициенты при х равны. Вычтем из первого уравнения второе, тогда получим:

Получили уравнение с двумя неизвестными у и Вместе с уравнением (3) оно образует систему двух уравнений с двумя неизвестными:

Решив её одним из способов, изложенных в § 80, найдём:

Подставив эти значения в (1) или (2) уравнение, найдём:

Итак, если данная система трёх уравнений с тремя неизвестными имеет решение, то это решение будет следующей тройкой чисел:

Подставляя эти значения в данную систем), можно убедиться, что полученная тройка чисел является решением системы.

2. Способ подстановки.

Для данной системы этот способ более удобен, так как в уравнении (3) неизвестное уже выражено через у. Сделав подстановку в уравнения (1) и (2), получим:

Решим эту систему любым способом, изложенным в § 80, например способом алгебраического сложения.

Умножим уравнение (5) на 15 и вычтем из него уравнение (4):

Отсюда найдём:

Подставив найденное значение у в уравнение (5), найдём: Наконец, подставив значение у в (3), найдём: Получили то же решение, что и первым способом.

Решим ещё систему способом алгебраического сложения:

Исключим одно из неизвестных, например Для этого сложим первое и второе уравнения, получим:

Умножим теперь второе уравнение на 2 и сложим с третьим, получим:

Оба полученных уравнения образуют систему уравнений с двумя неизвестными:

Решив её одним из известных способов, найдём: Подставив эти значения в одно из данных уравнений, например в первое, найдём: Итак, если данная система имеет решение, то оно может быть только такое: Подставив эти значения во второе и третье уравнения, убедимся, что они действительно дают решение данной системы.

Системы трёх линейных уравнений с тремя неизвестными.

Основные методы решения: подстановка, сложение или вычитание.

Читайте также:  Как снять крышку с часов casio

Определители третьего порядка. Правило Крамера.

Системы трёх линейных уравнений с тремя неизвестными имеют вид:

где a , b , c , d , e , f , g , h , p , q , r , s – заданные числа; x , y , z – неизвестные. Числа a , b , c , e , f , g , p , q , rкоэффициенты при неизвестных; d , h , sсвободные члены . Решение этой системы может быть найдено теми же двумя основными методами, рассмотренными выше: подстановки и сложения или вычитания. Мы же рассмотрим здесь подробно только метод Крамера.

Во-первых, введём понятие определителя третьего порядка. Выражение

называется определителем третьего порядка.

Запоминать это выражение не нужно, так как его легко получить, если переписать таблицу (2), добавив справа первые два столбца. Тогда оно вычисляется путём перемножения чисел, расположенных на диагоналях, идущих от a , b , c – направо ( со знаком « + » ) и от c , a , b – налево ( со знаком « – » ), и затем суммированием этих произведений:

Используя определитель третьего порядка (2), можно получить решение системы уравнений (1) в виде:

Эти формулы и есть правило Крамера для решения системы трёх линейных уравнений с тремя неизвестными.

П р и м е р . Решить методом Крамера систему трёх линейных уравнений с тремя неизвестными:

Р е ш е н и е . Введём следующие обозначения: D — знаменатель в формулах (4),

Dx , Dy , Dz – числители в выражениях для x , y , z – соответственно.

Тогда используя схему (3), получим:

отсюда по формулам Крамера (4): x = Dx / D = 0 / 32 = 0;

y = Dy / D = 32 / 32 = 1; z = Dz / D = 64 / 32 = 2 .

Copyright © 2004 — 2007 Др. Юрий Беренгард. All rights reserved.

Линейные уравнения (уравнения первой степени) с двумя неизвестными
Системы из двух линейных уравнений с двумя неизвестными
Системы из трех линейных уравнений с тремя неизвестными

Линейные уравнения (уравнения первой степени) с двумя неизвестными

Определение 1 . Линейным уравнением (уравнением первой степени) с двумя неизвестными x и y называют уравнение, имеющее вид

ax +by = c , (1)

где a , b , c – заданные числа.

Определение 2 . Решением уравнения (1) называют пару чисел (x ; y) , для которых формула (1) является верным равенством.

Пример 1 . Найти решение уравнения

2x +3y = 10 (2)

Решение . Выразим из равенства (2) переменную y через переменную x :

(3)

Из формулы (3) следует, что решениями уравнения (2) служат все пары чисел вида

где x – любое число.

Замечание . Как видно из решения примера 1, уравнение (2) имеет бесконечно много решений. Однако важно отметить, что не любая пара чисел (x ; y) является решением этого уравнения. Для того, чтобы получить какое-нибудь решение уравнения (2), число x можно взять любым, а число y после этого вычислить по формуле (3).

Читайте также:  Объединение серверов в кластер

Системы из двух линейных уравнений с двумя неизвестными

Определение 3 . Системой из двух линейных уравнений с двумя неизвестными x и y называют систему уравнений, имеющую вид

(4)

Определение 4 . В системе уравнений (4) числа a1 , b1 , a2 , b2 называют коэффициентами при неизвестных , а числа c1 , c2 – свободными членами .

Определение 5 . Решением системы уравнений (4) называют пару чисел (x ; y) , являющуюся решением как одного, так и другого уравнения системы (4).

Определение 6 . Две системы уравнений называют равносильными (эквивалентными) , если все решения первой системы уравнений являются решениями второй системы, и все решения второй системы являются решениями первой системы.

Равносильность систем уравнений обозначают, используя символ «»

Системы линейных уравнений решают с помощью метода последовательного исключения неизвестных , который мы проиллюстрируем на примерах.

Пример 2 . Решить систему уравнений

(5)

Решение . Для того, чтобы решить систему (5) исключим из второго уравнения системы неизвестное х .

С этой целью сначала преобразуем систему (5) к виду, в котором коэффициенты при неизвестном x в первом и втором уравнениях системы станут одинаковыми.

Если первое уравнение системы (5) умножить на коэффициент, стоящий при x во втором уравнении (число 7 ), а второе уравнение умножить на коэффициент, стоящий при x в первом уравнении (число 2 ), то система (5) примет вид

(6)

Теперь совершим над системой (6) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (6) преобразуется в равносильную ей систему

Из второго уравнения находим y = 3 , и, подставив это значение в первое уравнение, получаем

Пример 3 . Найти все значения параметра p , при которых система уравнений

(7)

а) имеет единственное решение;

б) имеет бесконечно много решений;

в) не имеет решений.

Решение . Выражая x через y из второго уравнения системы (7) и подставляя полученное выражение вместо x в первое уравнение системы (7), получим

Следовательно, система (7) равносильна системе

(8)

Исследуем решения системы (8) в зависимости от значений параметра p . Для этого сначала рассмотрим первое уравнение системы (8):

y (2 – p) (2 + p) = 2 + p (9)

Если , то уравнение (9) имеет единственное решение

Следовательно, система (8) равносильна системе

Таким образом, в случае, когда , система (7) имеет единственное решение

Читайте также:  Отзыв о мультиварке какая хорошая

Если p = – 2 , то уравнение (9) принимает вид

,

и его решением является любое число . Поэтому решением системы (7) служит бесконечное множество всех пар чисел

,

где y – любое число.

Если p = 2 , то уравнение (9) принимает вид

и решений не имеет, откуда вытекает, что и система (7) решений не имеет.

Системы из трех линейных уравнений с тремя неизвестными

Определение 7 . Системой из трех линейных уравнений с тремя неизвестными x , y и z называют систему уравнений, имеющую вид

(10)

Определение 9 . Решением системы уравнений (10) называют тройку чисел (x ; y ; z) , при подстановке которых в каждое из трех уравнений системы (10) получается верное равенство.

Пример 4 . Решить систему уравнений

(11)

Решение . Будем решать систему (11) при помощи метода последовательного исключения неизвестных .

Для этого сначала исключим из второго и третьего уравнений системы неизвестное y , совершив над системой (11) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • ко второму уравнению прибавим первое уравнение и заменим второе уравнение системы на полученную сумму;
  • из третьего уравнения вычтем первое уравнение и заменим третье уравнение системы на полученную разность.

В результате система (11) преобразуется в равносильную ей систему

(12)

Теперь исключим из третьего уравнения системы неизвестное x , совершив над системой (12) следующие преобразования:

  • первое и второе уравнения системы оставим без изменений;
  • из третьего уравнения вычтем второе уравнение и заменим третье уравнение системы на полученную разность.

В результате система (12) преобразуется в равносильную ей систему

(13)

Из системы (13) последовательно находим

Пример 5 . Решить систему уравнений

(14)

Решение . Заметим, что из данной системы можно получить удобное следствие, сложив все три уравнения системы:

Если числа (x ; y ; z) являются решением системы (14), то они должны удовлетворять и уравнению (15). Однако в таком случае числа (x ; y ; z) должны также быть решением системы, которая получается, если из каждого уравнения системы (14) вычесть уравнение (15):

Поскольку мы использовали следствие из системы (14), не задумываясь о том, являются ли сделанные преобразования системы (14) равносильными, то полученный результат нужно проверить. Подставив тройку чисел (3 ; 0 ; –1) в исходную систему (14), убеждаемся, что числа (3 ; 0 ; –1) действительно являются ее решением.

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы с нелинейными уравнениями» и нашим учебным пособием «Системы уравнений».

Ссылка на основную публикацию
Сервер не поддерживает символы не ascii
Многие из нас пользуются замечательным FTP сервером FileZilla Server. Думаю, не я один столкнулся с проблемой некорректного отображения русских букв...
Ресивер пионер vsx 528
5.1 канальный AV ресивер Pioneer VSX-528 с 6x HDMI, AirPlay, DLNA, MHL, сквозным сигналом Ultra HD 4K и Интернет-радио vTuner....
Ресивер для нтв плюс какой лучше
Телекомпания НТВ‑ПЛЮС гарантирует получение качественных услуг, а также обеспечение корректного доступа к каналам и дополнительным сервисам Телекомпании, только при условии...
Сервера для обновления nod32 бесплатно
Отличие полной версии от триальной Полные (не триальные) антивирусные базы и программные компоненты Eset Antivirus и Eset Smart Security! Отличия...
Adblock detector