Формула силы удара при столкновении

Формула силы удара при столкновении

Не секрет, что с безопасностью автомобиля связано множество мифов. В форумах, ЖЖ и офлайновых дискуссиях полно советов на тему того, какой автомобиль безопаснее и как лучше себя вести в аварийной ситуации. Большинство этих советов если не бесполезны, то малоосмысленны — человек советует покупать "пятизвездочный" автомобиль по EuroNCAP, а почему, как, собственно, и что эти звезды значат — объяснить не может. В частности, практически никто не понимает, как "звезды" соотносятся с вероятностью серьезно пострадать в аварии конкретного типа и при конкретной скорости. Понятно, что чем больше звезд — тем лучше, но насколько это "лучше" и где проходит безопасный предел? Пользователь LiveJournal 0serg посчитал, как, на чем и куда безопаснее врезаться, и разбил в пух и прах теорию EuroNCAP-овских "звезд".

Один из крайне распространенных мифов состоит в том, что очень часто, когда говорят о лобовом ударе автомобилей, скорости этих автомобилей складывают. Вася ехал 60 км/ч, а со встречки на него вылетел Петя на скорости 100 км/ч, удар — ну и сами понимаете, что там на 100+60 = 160 км/ч от машин осталось. Это — грубейшая ошибка. Реальная "эффективная скорость удара" для машин обычно будет равна приблизительно средней арифметической скоростей Васи и Пети — т.е. около 80 км/ч. И именно эта скорость (а не обывательские 160) и приводит к развороченным автомобилям и человеческим жертвам.

"На пальцах" происходящее можно пояснить таким образом: да, при ударе энергия двух автомобилей суммируется — но и поглощают ее тоже два автомобиля, поэтому на каждый автомобиль приходится лишь половина суммарной энергии удара. Корректный расчет происходящего при ударе доступен даже школьнику, хотя и требует определенной смекалки и воображения. Представим себе, что автомобили в момент удара скользят по ровному шоссе без сопротивления (учитывая, что удар происходит за очень короткое время и действующие на машины силы удара гораздо выше сил трения со стороны асфальта — даже при интенсивном торможении это допущение можно считать вполне справедливым). В этом случае движение при ударе будет полностью описываться одной-единственной силой — силой сопротивления сминаемых корпусов металла. Эта сила, по 3-му закону Ньютона, для обеих машин одинакова, но направлена в противоположные стороны.

Мысленно поставим между машинами тонкий, невесомый лист бумаги. Обе силы сопротивления (первой машины и второй) будут действовать "через" этот лист, но поскольку эти силы равны и противонаправленны, то они полностью компенсируют друг друга. А стало быть, на протяжении всего удара наш лист будет двигаться с нулевым ускорением — или, другими словами, с постоянной скоростью. В инерциальной системе координат, связанной с этим листом, обе машины как бы "врезаются" с разных сторон в этот неподвижный лист бумаги — до тех пор, пока не остановятся либо (одновременно) не отлетят от него. Вспоминаете методику EuroNCAP где машины врезаются в неподвижный барьер? Удар о наш гипотетический "лист бумаги" в нашей специальной системе координат будет равносилен удару о массивный бетонный блок на той же скорости.

Как посчитать скорость листа бумаги? Это довольно просто — достаточно вспомнить механику соударений из школьной программы. В какой-то момент оба автомобиля "останавливаются" относительно системы координат листа бумаги (это происходит в то мгновение, когда автомобили начинают разлетаться в разные стороны), что позволяет нам записать закон сохранения импульса. Считая массу одного автомобиля m1 и скорость v1, а другого — m2 и скорость v2, получаем скорость листа бумаги v по формуле

(m1+m2)*v = m1*v1 — m2*v2

v = m1/(m1+m2)*v1 — m2/(m1+m2)*v2

Для столкновения в "попутном" направлении скорость второй машины следует считать со знаком "минус".
Относительные скорости машин относительно бумаги (т.е. "эквивалентная скорость удара о бетонный блок") соответственно равны

u1 = (v1-v) = m2/(m1+m2) * (v1+v2)

u2 = (v+v2) = m1/(m1+m2) * (v1+v2)

Таким образом, "эквивалентная скорость" лобового удара действительно пропорциональна сумме скоростей автомобилей — однако берется она с неким "поправочным коэффициентом", учитывающим соотношение масс автомобилей. Для автомобилей равной массы он равен 0,5, т.е. суммарную скорость нужно поделить пополам — что и дает нам упомянутое в начале заметки типичное для подобных аварий "среднее арифметическое". В случае столкновения машин разной массы картина будет существенно иной — "тяжелая" машина пострадает меньше, чем "легкая", причем если различия в массе достаточно велики — разница будет колоссальной. Это типичная ситуация для аварий класса "влетела легковушка в груженый грузовик" — последствия такого удара для легковушки близки к последствиям удара на полноценной "суммарной" скорости, в то время как "грузовик" отделывается небольшими повреждениями, т.к. для него "эквивалентная скорость удара" оказывается равной десятой, а то и двадцатой доле суммарной скорости.

Читайте также:  Оптимизация файловой системы windows 10

Итак, мы научились считать "эквивалентную скорость удара" по очень простой формуле: нужно сложить скорости (для удара в попутном направлении — вычесть), а затем определить, какую долю массы составляет ЧУЖАЯ машина от суммарной массы ваших машин и умножить этот коэффициент на посчитанную скорость. Прикидочные значения коэффициента:

Машины примерно одинаковой весовой категории: 0.5

Малолитражка vs легковушка: малолитражка 0.6, легковушка 0.4

Малолитражка vs джип: малолитражка 0.75, джип 0.25

Легковушка vs джип: легковушка 0.65, джип 0.35

Легковушка vs грузовик: легковушка >0.9, грузовик 0.8, грузовик

Соударение — это столкновение двух тел. При соприкосновении тела обмениваются энергией и импульсом. После соударения они двигаются со скоростями, которые отличаются по направлению и величине от их скоростей до столкновения.

При лобовом центральном соударении центры масс обоих тел двигаются вдоль одной линии. Силы взаимодействия, возникающие при соударении, параллельны направлению движения. Если применить к такой системе двух тел закон сохранения импульса, то полный импульс системы будет равен алгебраической сумме импульсов обоих тел.

При упругом соударении на протяжении кратковременного соприкосновения тела двигаются с общей скоростью, затем они разлетаются и продолжают двигаться с разными скоростями.

m1 масса первого тела, кг
m2 масса второго тела, кг
u1 скорость первого тела до соударения, метр/секунда
u2 масса второго тела до соударения, метр/секунда
u`1 скорость первого тела после соударения, метр/секунда
u`2 масса второго тела после соударения, метр/секунда

то из закона сохранения импульса следует

Из закона сохранения энергии получаем

подставив формулу разность квадратов получим

воспользовавшись законом сохранения импульса, находим

Сумма скоростей до и после соударения одинакова при любом соударении тел.

Из формулы (6) следует

Подставив эти выражения в видоизмененный закон сохранения импульса, получим

откуда, разрешив относительно u`1 и u`2 найдем

При противоположном направлении; движения скорость считается отрицательной.

Поскольку полная энергия до и после соударения остается неизменной, после столкновения тела приобретают свою первоначальную форму, возникающие в момент соударения деформации исчезают.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы продолжаем изучать законы сохранения и рассмотрим различные возможные удары тел. Из своего опыта вы знаете, что накачанный баскетбольный мяч хорошо отскакивает от пола, тогда как сдутый – практически не отскакивает. Из этого вы могли сделать вывод, что удары различных тел могут быть разными. Для того чтобы охарактеризовать удары, вводятся абстрактные понятия абсолютно упругого и абсолютно неупругого ударов. На этом уроке мы займемся изучением различных ударов.

Тема: Законы сохранения в механике

Урок: Столкновение тел. Абсолютно упругий и абсолютно неупругий удары

1. Введение

Для изучения строения вещества, так или иначе, используются различные столкновения. Например, для того, чтобы рассмотреть какой-то предмет, его облучают светом, или потоком электронов, и по рассеянию этого света, или потока электронов получают фотографию, или рентгеновский снимок, или изображение данного предмета в каком-либо физическом приборе. Таким образом, столкновение частиц – это то, что окружает нас и в быту, и в науке, и в технике, и в природе.

Читайте также:  Рутрекер официальный сайт регистрация

Например, при одном столкновении ядер свинца в детекторе ALICE Большого Адронного Коллайдера рождаются десятки тысяч частиц, по движению и распределению которых можно узнать о самых глубинных свойствах вещества. Рассмотрение процессов столкновения с помощью законов сохранения, о которых мы говорим, позволяет получать результаты, независимо от того, что происходит в момент столкновения. Мы не знаем, что происходит в момент столкновения двух ядер свинца, но мы знаем, какова будет энергия и импульс частиц, которые разлетаются после этих столкновений.

Сегодня мы рассмотрим взаимодействие тел в процессе столкновения, иными словами движение невзаимодействующих тел, которые меняют свое состояние только при соприкосновении, которое мы называем столкновением, или ударом.

При столкновении тел, в общем случае, кинетическая энергия сталкивающихся тел не обязана быть равной кинетической энергии разлетающихся тел. Действительно, при столкновении тела взаимодействуют друг с другом, воздействуя друг на друга и совершая работу. Эта работа и может привести к изменению кинетической энергии каждого из тел. Кроме того, работа, которую совершает первое тело над вторым, может оказаться неравной работе, которую второе тело совершает над первым. Это может привести к тому, что механическая энергия может перейти в тепло, электромагнитное излучение, или даже породить новые частицы.

Столкновения, при которых не сохраняется кинетическая энергия сталкивающихся тел, называют неупругими.

Среди всех возможных неупругих столкновений, есть один исключительный случай, когда сталкивающиеся тела в результате столкновения слипаются и дальше движутся как одно целое. Такой неупругий удар называют абсолютно неупругим (рис. 1).

а)б)

Рис. 1. Абсолютное неупругое столкновение

Рассмотрим пример абсолютно неупругого удара. Пусть пуля массой летела в горизонтальном направлении со скоростью и столкнулась с неподвижным ящиком с песком массой , подвешенным на нити. Пуля застряла в песке, и дальше ящик с пулей пришел в движение. В процессе удара пули и ящика внешние силы, действующие на эту систему, – это сила тяжести, направленная вертикально вниз, и сила натяжения нити, направленная вертикально вверх, если время удара пули было настолько мало, что нить не успела отклониться. Таким образом, можно считать, что импульс сил, действующих на тело во время удара, был равен нулю, что означает, что справедлив закон сохранения импульса:

.

Условие, что пуля застряла в ящике, и есть признак абсолютно неупругого удара. Проверим, что произошло с кинетической энергией в результате этого удара. Начальная кинетическая энергия пули:

,

конечная кинетическая энергия пули и ящика:

простая алгебра показывает нам, что в процессе удара кинетическая энергия изменилась:

.

Итак, начальная кинетическая энергия пули меньше конечной на некоторую положительную величину. Как же это произошло? В процессе удара между песком и пулей действовали силы сопротивления. Разность кинетических энергий пули до и после столкновения как раз и равны работе сил сопротивления. Другими словами, кинетическая энергия пули пошла на нагрев пули и песка.

Если в результате столкновения двух тел сохраняется кинетическая энергия, такой удар называется абсолютно упругим.

Примером абсолютно упругих ударов могут быть столкновения бильярдных шаров. Мы рассмотрим простейший случай такого столкновения – центральное столкновение.

Центральным называется столкновение, при котором скорость одного шара проходит через центр масс другого шара. (Рис. 2.)

Рис. 2. Центральный удар шаров

Пускай один шар покоится, а второй налетает на него с какой-то скоростью , которая, согласно нашему определению, проходит через центр второго шара. Если столкновение центральное и упругое, то при столкновении возникают силы упругости, действующие вдоль линии столкновения. Это приводит к изменению горизонтальной составляющей импульса первого шара, и к возникновению горизонтальной составляющей импульса второго шара. После удара второй шар получит импульс, направленный направо, а первый шар может двигаться как направо, так и налево – это будет зависеть от соотношения между массами шаров. В общем случае, рассмотрим ситуацию, когда массы шаров различны.

Закон сохранения импульса выполняется при любом столкновении шаров:

Читайте также:  Как настроить видеокарту amd radeon под игры

.

В случае абсолютно упругого удара, также выполняется закон сохранения энергии:

Получаем систему из двух уравнений с двумя неизвестными величинами. Решив ее, мы получим ответ.

Скорость первого шара после удара равна

,

заметим, что эта скорость может быть как положительной, так и отрицательной, в зависимости от того, масса какого из шаров больше. Кроме того, можно выделить случай, когда шары одинаковые. В этом случае после удара первый шар остановится. Скорость второго шара, как мы ранее отметили, получилась положительной при любом соотношении масс шаров:

.

Наконец, рассмотрим случай нецентрального удара в упрощенном виде – когда массы шаров равны. Тогда, из закона сохранения импульса мы можем записать:

А из того, что кинетическая энергия сохраняется:

Нецентральным будет удар, при котором скорость налетающего шара не будет проходить через центр неподвижного шара (рис. 3). Из закона сохранения импульса, видно, что скорости шаров составят параллелограмм. А из того, что сохраняется кинетическая энергия, видно, что это будет не параллелограмм, а квадрат.

Рис. 3. Нецентральный удар при одинаковых массах

Таким образом, при абсолютно упругом нецентральном ударе, когда массы шаров равны, они всегда разлетаются под прямым углом друг к другу.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. – М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике – М.: Наука, 1988.
  4. А. В. Пёрышкин, В. В. Крауклис. Курс физики т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 3 ГИА и вопросам А4 ЕГЭ.

1. Задачи 327, 328, 329, 330 сб. задач А.П. Рымкевич изд. 10 (Источник)

2. Возьмите два мячика для настольного тенниса. Столкните их, что вы наблюдаете? Проделайте в мячиках отверстия. Столкните их снова. Что изменилось?

3. Рассмотрите следующие вопросы и ответы на них:

Список вопросов – ответов:

Вопрос: Приведите больше примеров абсолютно неупругих ударов. Существуют ли такие удары в природе?

Ответ: Да, действительно такие удары существуют в природе. Например, если мяч попадает в сетку футбольных ворот, или кусок пластилина выскальзывает из ваших рук и прилипает к полу, или стрела, которая застряла в подвешенной на нитках мишени, или попадание снаряда в баллистический маятник.

Вопрос: Приведите больше примеров абсолютно упругого удара. Существуют ли они в природе?

Ответ: В природе не существует абсолютно упругих ударов, поскольку при любом ударе часть кинетической энергии тел тратится на совершение некими сторонними силами работы. Однако иногда мы можем считать некие удары абсолютно упругими. Мы вправе делать это, когда изменение кинетической энергии тела при ударе незначительное по сравнению с этой энергией. Примерами таких ударов может служить баскетбольный мяч, который отскакивает от асфальта, или столкновения металлических шариков. Упругими также принято считать соударения молекул идеального газа.

Вопрос: Что делать, когда удар частично упругий?

Ответ: Нужно оценить, какое количество энергии ушло на работу диссипативных сил, то есть таких сил, как сила трения или сила сопротивления. Далее нужно воспользоваться законами сохранения импульса и узнать кинетическую энергию тел после столкновения.

Вопрос: Как стоит решать задачу о нецентральном ударе шаров, имеющих разные массы?

Ответ: Стоит записать закон сохранения импульса в векторной форме, и то, что кинетическая энергия сохраняется. Далее, у вас получится система из двух уравнений и двух неизвестных, решив которую, вы сможете найти скорости шаров после столкновения. Однако, следует отметить, что это достаточно сложный и трудоемкий процесс, выходящий за рамки школьной программы.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Ссылка на основную публикацию
Установка mac os transmac
В сети сейчас полно копипастов, по сути одной и той же статьи, про установку MacOS X на хакинтош примерно с...
Тест для определения цвета волос
Пожалуйста, не копируйте понравившиеся вам статьи незаконно. Мы предлагаем вам разместить активную ссылку на наш сайт в случае, если вы...
Тест графики видеокарты 3dmark
Наиболее известная программа тестирования производительности, ставшая де-факто стандартом и точкой отсчета в измерениях игровых возможностей видеокарт. Основную популярность программе обеспечило...
Установка op com на windows 10
Всем привет! Очень многие вектроводы заказывают с Китая OP-COM и сталкиваются с проблемами установки драйверов самого OP-COM на различных системах...
Adblock detector