Фокальные радиусы эллипса формула

Фокальные радиусы эллипса формула

Точки F1(–c, 0) и F2(c, 0), где называются фокусами эллипса, при этом величина 2c определяет междуфокусное расстояние.

Точки А1(–а, 0), А2(а, 0), В1(0, –b), B2(0, b) называются вершинами эллипса (рис. 9.2), при этом А1А2 = 2а образует большую ось эллипса, а В1В2 – малую, – центр эллипса.

Основные параметры эллипса, характеризующие его форму:

ε = с/aэксцентриситет эллипса;

фокальные радиусы эллипса (точка М принадлежит эллипсу), причем r1 = a + εx, r2 = aεx;

директрисы эллипса.

Для эллипса справедливо: директрисы не пересекают границу и внутреннюю область эллипса, а также обладают свойством

Эксцентриситет эллипса выражает его меру «сжатости».

Если b > a > 0, то эллипс задается уравнением (9.7), для которого вместо условия (9.8) выполняется условие

. (9.9)

Тогда 2а – малая ось, 2b – большая ось, – фокусы (рис. 9.3). При этом r1 + r2 = 2b,
ε = c/b, директрисы определяются уравнениями:

При условии имеем (в виде частного случая эллипса) окружность радиуса R = a. При этом с = 0, а значит, ε = 0.

Точки эллипса обладают характеристическим свойством: сумма расстояний от каждой из них до фокусов есть величина постоянная, равная 2а (рис. 9.2).

Для параметрического задания эллипса (формула (9.7)) в случаях выполнения условий (9.8) и (9.9) в качестве параметра t может быть взята величина угла между радиус-вектором точки, лежащей на эллипсе, и положительным направлением оси Ox:

где

Если центр эллипса с полуосями находится в точке то его уравнение имеет вид:

(9.10)

Пример 1. Привести уравнение эллипса x 2 + 4y 2 = 16 к каноническому виду и определить его параметры. Изобразить эллипс.

Решение. Разделим уравнение x 2 + 4y 2 = 16 на 16, после чего получим:

По виду полученного уравнения заключаем, что это каноническое уравнение эллипса (формула (9.7)), где а = 4 – большая полуось, b = 2 – малая полуось. Значит, вершинами эллипса являются точки A1(–4, 0), A2(4, 0), B1(0, –2), B2(0, 2). Так как – половина междуфокусного расстояния, то точки являются фокусами эллипса. Вычислим эксцентриситет:

Изображаем эллипс (рис. 9.4).

Пример 2. Определить параметры эллипса

Решение. Сравним данное уравнение с каноническим уравнением эллипса со смещенным центром. Находим центр эллипса С: Большая полуось малая полуось прямые – главные оси. Половина междуфокусного расстояния а значит, фокусы Эксцентриситет Директрисы D1 и D2 могут быть описаны с помощью уравнений: (рис. 9.5).

Пример 3. Определить, какая кривая задается уравнением, изобразить ее:

3) x 2 + 4y 2 – 2x + 16y + 1 = 0; 4) x 2 + 4y 2 – 2x + 16y + 17 = 0;

5)

Решение. 1) Приведем уравнение к каноническому виду методом выделения полного квадрата двучлена:

(x 2 + 4x + 4) – 4 + (y 2 – 2y + 1) – 1 + 4 = 0;

Таким образом, уравнение может быть приведено к виду

Это уравнение окружности с центром в точке (–2, 1) и радиусом R = 1 (рис. 9.6).

2) Выделяем полные квадраты двучленов в левой части уравнения и получаем:

Это уравнение не имеет смысла на множестве действительных чисел, так как левая часть неотрицательна при любых действительных значениях переменных x и y, а правая – отрицательна. Поэтому говорят, что это уравнение «мнимой окружности» или оно задает пустое множество точек плоскости.

3) Выделяем полные квадраты:

(x 2 – 2x + 1) – 1 + 4(y 2 + 4y + 4) – 16 + 1 = 0;

(x – 1) 2 + 4(y + 2) 2 – 16 = 0;

Значит, уравнение имеет вид:

или

Полученное уравнение, а следовательно, и исходное задают эллипс. Центр эллипса находится в точке О1(1, –2), главные оси задаются уравнениями y = –2, x = 1, причем большая полуось а = 4, малая полуось b = 2 (рис. 9.7).

4) После выделения полных квадратов имеем:

Читайте также:  Фото коллажи для нескольких фотографий

(x – 1) 2 + 4(y + 2) 2 – 17 + 17 = 0 или (x – 1) 2 + 4(y + 2) 2 = 0.

Полученное уравнение задает единственную точку плоскости с координатами (1, –2).

5) Приведем уравнение к каноническому виду:

Очевидно, оно задает эллипс, центр которого находится в точке главные оси задаются уравнениями причем большая полуось малая полуось (рис. 9.8).

Пример 4. Записать уравнение касательной к окружности радиуса 2 с центром в правом фокусе эллипса x 2 + 4y 2 = 4 в точке пересечения с осью ординат.

Решение. Уравнение эллипса приведем к каноническому виду (9.7):

Значит, и правый фокус – Поэтому, искомое уравнение окружности радиуса 2 имеет вид (рис. 9.9):

Окружность пересекает ось ординат в точках, координаты которых определяются из системы уравнений:

Пусть это точки N (0; –1) и М (0; 1). Значит, можно построить две касательные, обозначим их Т1 и Т2. По известному свойству касательная перпендикулярна радиусу, проведенному в точку касания.

Пусть Тогда уравнение касательной Т1 примет вид:

значит, или Т1:

Тогда уравнение касательной Т2 примет вид:

значит, или Т2:

Пример 5. Записать уравнение окружности, проходящей через точку М(1, –2) и точки пересечения прямой x – 7y + 10 = 0 с окружностью x 2 + y 2 – 2x + 4y – 20 = 0.

Решение. Найдем точки пересечения прямой x – 7y + 10 = 0 с окружностью x 2 + y 2 – 2x + 4y – 20 = 0, решив систему уравнений:

Выразим х из первого уравнения системы:

Затем подставим во второе:

(7y – 10) 2 + y 2 – 2(7y – 10) + 4y – 20 = 0.

Оно равносильно уравнению

Используя формулы корней квадратного уравнения, найдем y1 = 1, y2 = 2, откуда x1 = –3, x2 = 4.

Итак, имеем три точки, лежащие на окружности: M(1, –2), M1(4, 2) и M2(–3, 1). Пусть О1(x, y) – центр окружности. Тогда где R – радиус окружности.

Найдем координаты векторов:

что равносильно системе

Решая последнюю систему, получаем ответ:

Таким образом, центр окружности находится в точке (0,5; 1,5), ее радиус

Тогда каноническое уравнение искомой окружности имеет вид:

Дата добавления: 2015-09-29 ; просмотров: 4522 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Определение: Фокальными радиусами точки М, принадлежа-щей эллипсу, называются отрезки, соединяющие эту точку с фокусами.

Из соотношения (7) имеем .

Тогда ε = = (15).

Откуда (16).

Из уравнения (8) найдём у 2

у 2 = (1 – )

Тогда F1M = =

с учётом = и = получаем

=

Здесь надо выбирать знак таким образом, чтобы правая часть была положительной.

Таким образом, формула для фокального радиуса F1M имеет вид

F1M = (17).

Аналогично выводится формула для фокального радиуса F2M

F2M = (18).

Иногда фокальные радиусы F1M и F2M обозначаются соответст-венно r1 и r2.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10549 — | 7758 — или читать все.

Определение 7.1. Множество всех точек на плоскости, для которых сумма расстояний до двух фиксированных точек F1 и F2 есть заданная постоянная величина, называют эллипсом.

Определение эллипса дает следующий способ его геометрического построения. Фиксируем на плоскости две точки F1 и F2, а неотрицательную постоянную величину обозначим через 2а. Пусть расстояние между точками F1 и F2 равно 2c. Представим себе, что нерастяжимая нить длиной 2а закреплена в точках F1 и F2, например, при помощи двух иголок. Ясно, что это возможно лишь при а ≥ с. Натянув нить карандашом, начертим линию, которая и будет эллипсом (рис. 7.1).

Итак, описываемое множество не пусто, если а ≥ с. При а = с эллипс представляет собой отрезок с концами F1 и F2, а при с = 0, т.е. если указанные в определении эллипса фиксированные точки совпадают, он является окружностью радиуса а. Отбрасывая эти вырожденные случаи, будем далее предполать, как правило, что а > с > 0.

Читайте также:  Табор знакомства вход на мою страницу 7639566

Фиксированные точки F1 и F2 в определении 7.1 эллипса (см. рис. 7.1) называют фокусами эллипса, расстояние между ними, обозначенное через 2c, — фокальным расстоянием, а отрезки F1M и F2M, соединяющие произвольную точку M на эллипсе с его фокусами, — фокальными радиусами.

Вид эллипса полностью определяется фокальным расстоянием |F1F2| = 2с и параметром a, а его положение на плоскости — парой точек F1 и F2.

Из определения эллипса следует, что он симметричен относительно прямой, проходящей через фокусы F1 и F2, а также относительно прямой, которая делит отрезок F1F2 пополам и перпендикулярна ему (рис. 7.2, а). Эти прямые называют осями эллипса. Точка O их пересечения является центром симметрии эллипса, и ее называют центром эллипса, а точки пересечения эллипса с осями симметрии (точки A, B, C и D на рис. 7.2, а) — вершинами эллипса.

Число a называют большой полуосью эллипса, а b = √(a 2 — c 2 ) — его малой полуосью. Нетрудно заметить, что при c > 0 большая полуось a равна расстоянию от центра эллипса до тех его вершин, которые находятся на одной оси с фокусами эллипса (вершины A и B на рис. 7.2, а), а малая полуось b равна расстоянию от центра эллипса до двух других его вершин (вершины C и D на рис. 7.2, а).

Уравнение эллипса. Рассмотрим на плоскости некоторый эллипс с фокусами в точках F1 и F2, большой осью 2a. Пусть 2c — фокальное расстояние, 2c = |F1F2| 2 + y 2 ) + √((x + c) 2 + y 2 ) = 2a. (7.2)

Это уравнение неудобно, так как в нем присутствуют два квадратных радикала. Поэтому преобразуем его. Перенесем в уравнении (7.2) второй радикал в правую часть и возведем в квадрат:

(x — c) 2 + y 2 = 4a 2 — 4a√((x + c) 2 + y 2 ) + (x + c) 2 + y 2 .

После раскрытия скобок и приведения подобных слагаемых получаем

√((x + c) 2 + y 2 ) = a + εx

где ε = c/a. Повторяем операцию возведения в квадрат, чтобы убрать и второй радикал: (x + c) 2 + y 2 = a 2 + 2εax + ε 2 x 2 , или, учитывая значение введенного параметра ε, (a 2 — c 2 ) x 2 /a 2 + y 2 = a 2 — c 2 . Так как a 2 — c 2 = b 2 > 0, то

x 2 /a 2 + y 2 /b 2 = 1, a > b > 0. (7.4)

Уравнению (7.4) удовлетворяют координаты всех точек, лежащих на эллипсе. Но при выводе этого уравнения использовались неэквивалентные преобразования исходного уравнения (7.2) — два возведения в квадрат, убирающие квадратные радикалы. Возведение уравнения в квадрат является эквивалентным преобразованием, если в обеих его частях стоят величины с одинаковым знаком, но мы этого в своих преобразованиях не проверяли.

Мы можем не проверять эквивалентность преобразований, если учтем следующее. Пара точек F1 и F2, |F1F2| = 2c, на плоскости определяет семейство эллипсов с фокусами в этих точках. Каждая точка плоскости, кроме точек отрезка F1F2, принадлежит какому-нибудь эллипсу указанного семейства. При этом никакие два эллипса не пересекаются, так как сумма фокальных радиусов однозначно определяет конкретный эллипс. Итак, описанное семейство эллипсов без пересечений покрывает всю плоскость, кроме точек отрезка F1F2. Рассмотрим множество точек, координаты которых удовлетворяют уравнению (7.4) с данным значением параметра a. Может ли это множество распределяться между несколькими эллипсами? Часть точек множества принадлежит эллипсу с большой полуосью a. Пусть в этом множестве есть точка, лежащая на эллипсе с большой полуосью а. Тогда координаты этой точки подчиняются уравнению

т.е. уравнения (7.4) и (7.5) имеют общие решения. Однако легко убедиться, что система

Читайте также:  Усилитель для наушников sony pha 1a

при ã ≠ a решений не имеет. Для этого достаточно исключить, например, x из первого уравнения:

что после преобразований приводит к уравнению

не имеющему решений при ã ≠ a, поскольку . Итак, (7.4) есть уравнение эллипса с большой полуосью a > 0 и малой полуосью b =√(a 2 — c 2 ) > 0. Его называют каноническим уравнением эллипса.

Вид эллипса. Рассмотренный выше геометрический способ построения эллипса дает достаточное представление о внешнем виде эллипса. Но вид эллипса можно исследовать и с помощью его канонического уравнения (7.4). Например, можно, считая у ≥ 0, выразить у через x: y = b√( 1 — x 2 /a 2 ), и, исследовав эту функцию, построить ее график. Есть еще один способ построения эллипса. Окружность радиуса a с центром в начале канонической системы координат эллипса (7.4) описывается уравнением x 2 + y 2 = а 2 . Если ее сжать с коэффициентом a/b > 1 вдоль оси ординат, то получится кривая, которая описывается уравнением x 2 + (ya/b) 2 = a 2 , т. е. эллипс.

Замечание 7.1. Если ту же окружность сжать с коэффициентом a/b 2 — a 2 ), ε = 2c/2b = c/b.

При с =0, когда эллипс превращается в окружность, и ε = 0. В остальных случаях 0 2 — с 2 ), а с = εa = 4, то b = √(5 2 — 4 2 ) = 3. Значит каноническое уравнение имеет вид x 2 /5 2 + y 2 /3 2 = 1. Для построения эллипса удобно изобразить прямоугольник с центром в начале канонической системы координат, стороны которого параллельны осям симметрии эллипса и равны его соответствующим осям (рис. 7.4). Этот прямоугольник пересекается с

осями эллипса в его вершинах A(—5; 0), B(5; 0), C(0; -3), D(0; 3), причем сам эллипс вписан в него. На рис. 7.4 указаны также фокусы F1,2(±4; 0) эллипса.

Геометрические свойства эллипса. Перепишем первое уравнение в (7.6) в виде |F1M| = (а/ε — x)ε. Отметим, что величина а/ε — x при а > с положительна, так как фокус F1 не принадлежит эллипсу. Эта величина представляет собой расстояние до вертикальной прямой d: x = а/ε от точки M(x; у), лежащей левее этой прямой. Уравнение эллипса можно записать в виде

Оно означает, что этот эллипс состоит из тех точек M(x; у) плоскости, для которых отношение длины фокального радиуса F1M к расстоянию до прямой d есть величина постоянная, равная ε (рис. 7.5).

У прямой d есть " двойник " — вертикальная прямая d’, симметричная d относительно центра эллипса, которая задается уравнением x = —а/ε. Относительно d’ эллипс описывается так же, как и относительно d. Обе прямые d и d’ называют директрисами эллипса. Директрисы эллипса перпендикулярны той оси симметрии эллипса, на которой расположены его фокусы, и отстоят от центра эллипса на расстояние а/ε = а 2 /с (см. рис. 7.5).

Расстояние p от директрисы до ближайшего к ней фокуса называют фокальным параметром эллипса. Этот параметр равен

p = a/ε — c = (a 2 — c 2 )/c = b 2 /c

Эллипс обладает еще одним важным геометрическим свойством: фокальные радиусы F1M и F2M составляют с касательной к эллипсу в точке M равные углы (рис. 7.6).

Это свойство имеет наглядный физический смысл. Если в фокусе F1 расположить источник света, то луч, выходящий из этого фокуса, после отражения от эллипса пойдет по второму фокальному радиусу, так как после отражения он будет находиться под тем же углом к кривой, что и до отражения. Таким образом, все лучи, выходящие из фокуса F1, сконцентрируются во втором фокусе F2, и наоборот. Исходя из данной интерпретации указанное свойство называют оптическим свойством эллипса.

Ссылка на основную публикацию
Установка mac os transmac
В сети сейчас полно копипастов, по сути одной и той же статьи, про установку MacOS X на хакинтош примерно с...
Тест для определения цвета волос
Пожалуйста, не копируйте понравившиеся вам статьи незаконно. Мы предлагаем вам разместить активную ссылку на наш сайт в случае, если вы...
Тест графики видеокарты 3dmark
Наиболее известная программа тестирования производительности, ставшая де-факто стандартом и точкой отсчета в измерениях игровых возможностей видеокарт. Основную популярность программе обеспечило...
Установка op com на windows 10
Всем привет! Очень многие вектроводы заказывают с Китая OP-COM и сталкиваются с проблемами установки драйверов самого OP-COM на различных системах...
Adblock detector